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Fields on the Poincag Group: Arbitrary Spin
Description and Relativistic Wave Equations
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In this paper, starting from a pure group-theoretic point of view, we develop an ap-
proach to describing particles with different spins in the framework of a theory of scalar
fields on the Poincargroup. Such fields can be considered as generating functions
for conventional spin-tensor fields. The case of two, three, and four dimensions are
elaborated in detail. Discrete transformati@sP, T are defined for the scalar fields

as automorphisms of the Poineagroup. We classify the scalar functions, and ob-
tain relativistic wave equations for particles with definite spin and mass. There exist
two different types of scalar functions (which describe the same mass and spin), one
related to a finite-dimensional nonunitary representation and the other to an infinite-
dimensional unitary representation of the Lorentz subgroup. This allows us to derive
both usual finite-component wave equations for spin-tensor fields and positive-energy,
infinite-component wave equations.

1. INTRODUCTION

Traditionally in field theory, particles with different spins are described by
multicomponent spin-tensor fields on Minkowski space. However, it is possible to
use for this purpose scalar functions as well, which depend on both Minkowski
space coordinates and on continuous bosonic variables corresponding to spin de-
grees of freedom. Such fields were introduced (Bargmann and Wigner, 1948;
Ginzburg and Tamm, 1947; Shirokov, 1951; Yukawa, 1950) in connection with
the problem of constructing relativistic wave equations (RWE). Fields of this type
may be treated as fields on homogeneous spaces of the Rogroap. A sys-
tematic development of this point of view was given by Finkelstein (1955). He
also gave a classification and explicit constructions of homogeneous spaces of
the Poincag’group, which contain Minkowski space. The next logical step was
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taken by Lucat (1964), who suggested constructing quantum field theory on the
Poinca¥g group. One of the motivations was to give a dynamical role to the spin.
These ideas were developed in Azod976), Bacry and Kihlberg (1969), Boyer

and Fleming (1974), Drechsler (1997), Kihlberg (1970), and Toller (1978, 1996).
For example, different homogeneous spaces were described, as well as possibilities
to introduce interactions in spin phase space and to construct Lagrangian formu-
lations. Bacry and Kihlberg (1969) concluded that eight is the lowest dimension
of a homogeneous space suitable for a description of both half-integer and integer
spins. However, no convincing physical motivation for the choice of homogeneous
spaces was presented, and the interpretation of additional degrees of freedom and
of corresponding quantum numbers remained an open problem.

In this paper, starting from a pure group-theoretic point of view, we develop
a regular approach to describing particles with different spins in the framework
of a theory of scalar fields on the Poineagfoup. Such fields can be consid-
ered as generating functions for conventional spin-tensor fields. In this language,
the problem of constructing RWE of different types is formulated from a unique
position.

We use scalar fields on the proper Poircgroup, that is, fields on the
10-dimensional manifold; this manifold is a direct product of Minkowski space and
of the manifold of the Lorentz subgroup. These fields arise in our constructions in
the course of studying a generalized regular representation (GRR). This provides
the possibility to analyze all the representations of the Poingestip. Study of
a GRR implies the use of harmonic analysis (Barut and Raczka, 1977; Vilenkin,
1968; Vilenkin and Klimyk, 1991; Zhelobenko and Schtern, 1983). In a sense, this
method is an alternative to that of induced representations suggested by Wigner
(1939) (also see Barut and Raczka, 1977; Kim and Noz, 1986; Mackey, 1968;
Ohnuki, 1988). It turns out that the fields on the Poiragndup can be considered
as generating functions for the usual spin-tensor fields on Minkowski space, and
thus we naturally obtain all results for the latter fields. However, sometimes it is
more convenient to formulate properties and equations for spin-tensor fields in
terms of the generating functions. Moreover, the problem of constructing RWE
is very natural in the language of the scalar fields on the group. We show that
this problem can be formulated as a problem of classifying different scalar fields.
For this purpose, in accordance with the general theory of harmonic analysis, we
consider various sets of commuting operators and identify constructing RWE with
eigenvalue problems for these operators. We define discrete transformations for
the scalar fields using automorphisms of the proper Paengarip. The space of
scalar fields on the group turns out to be closed with respect to the discrete transfor-
mations. The latter transformations are of fundamental importance for constructing
RWE and for their analysis. Consideration of the discrete transformations helps us
to give the right physical interpretation for quantum numbers that appear in course
of classifying the scalar fields.
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The paper is organized as follows. In Section 2, we introduce the basic objects
of study, namely, scalar fieldb(x, z). The scalar fields depend o which are
coordinates on Minkowski space, andiwhich are coordinates on the Lorentz
subgroup. The complex coordinatedescribe spin degrees of freedom. Itis shown
thatthese fields are generating functions for the usual spin-tensor fields. Classifying
the scalar fields with the help of various sets of commuting operators on the group,
we get a description of irreps of the group. We formulate a general scheme of
constructing RWE in this language in any number of dimensions. We introduce
discrete transformations in the space of the scalar functions, and we relate these
transformations to automorphisms of the proper Pomgaoup.

In Section 3, we apply the above general scheme to a detailed study of scalar
fields on two-dimensional Poinaend Euclidean groups. In particular, we con-
struct RWE and analyze their solutions.

The three-dimensional case of Poireard Euclidean groups is considered in
Section 4. Besides finite-component equations, we also construct positive-energy
RWE associated with unitary infinite-dimensional irreps of the P Lorentz
group. These equations, in particular, describe particles with fractional spins.

In Section 5, we study scalar fields on the-3 proper Poincar group. The
connection of the present consideration with other approaches to RWE theory is
considered in detail. In particular, we consider equations with subsidiary condi-
tions. General first-order Gel'fand—Yaglom equations (including Bhabha equa-
tions), Dirac—Fierz—Pauli equations, and Rarita—Schwinger equations arise in the
present consideration as well. This gives a basis for comparison of properties of
various RWE.

Classifying scalar functions in two, three, and four dimensions, we obtain
equations describing fields with fixed mass and spin. In Section 6, we consider the
general features of these equations.

The construction of RWE is elaborated in detail only for the massive case.
We plan to discuss the massless case in a later article.

2. FIELDS ON THE PROPER POINCAR E GROUP
AND SPIN DESCRIPTION

2.1. Parametrization of the Poincag Group

Consider Poincargroup transformations

XV = A" +a (2.1)
of coordinatesx = (x*, u =0, ..., D) ind = (D + 1)-dimensional Minkowski
spaceds’ = 1, d¥* dx’, n,,, = diag(1 —1, ..., —1). The matrices\ define ro-

tations in Minkovski space and belong to the vector representation @itbe 1)
group. We are also going to consider thedimensional Euclidean case in which
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ds = i dX dxX andni = diag(1 1,...,1),i,k =1,..., D. Here the matrices
A belong to the vector representation of BéD) group.

The transformations (2.1), which can be obtained continuously from the iden-
tity, form the proper PoincargroupMo(D, 1) with the elementg = (a, A). Cor-
responding homogeneous transformatians-(0) form the proper Lorentz group
SQ(D, 1). In the Euclidean case, we deal wity(D) andSQ(D). The composi-
tion law and the inverse element of these groups have the form

(a2, A2)(ar, A1) = (ax + Az, AxA1), g l=(—A"ta,A™Y. (2.2
Thus, the group#y(D, 1) andMg(D) are semidirect products
Mo(D, 1) = T(d) x) SQy(D, 1), Mo(D) = T(D) x) SQD),

whereT (d) is thed-dimensional translation group.

There exists a one-to-one correspondence between the vecioib 2x 2
Hermitian matricesX in pseudo-Euclidean spaces of two, three, and four
dimensions,

X< X, X=x"o,. (2.3)
Namely,
Do (X0 xt—ix?
d=3+1 X_<x1+ix2 W03 ) (2.4)
_ x0 xt — ix?
x0 xt
In all the above cases,
1 —
detX = n,,x*x", x¥ = > Tr(Xo™). (2.7)
In Euclidean spaces of two and three dimensions, a similar correspondence has
the form
_ x3 xt —ix?
D=3 X= <X1+iX2 —X3 ), (28)
x?  xt

4We use two sets of 2 2 matricess,, = (0o, ok) anda, = (o0, —0k),

(10 (01 (1 (10
%=\o1) *=\10) 2=\i o) ®=\o-1)
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If x is subjected to a transformation (2.1), thérransforms as follows (see,
e.g., Vilenkin, 1968):

X' = UXU" + A, (2.10)
whereA = a0, andU are 2x 2 complex matrices obeying the conditions
oA, =Ug,UT. (2.11)

Equation (2.11) relates the matricksandU. There are many that correspond
to the same\. We may fix this arbitrariness by imposing the condition

detU = 1, (2.12)

which does not contradict the relation dét= €¢, which follows from (2.11).
However, there is no one-to-one correspondence betweandU, namely two
matrices U, —U) correspond to one\. Considering bothJ and —U as rep-
resentatives forA, we in fact go over fromSQy(D, 1) to its double covering
group SpinD, 1), or, in the Euclidean case, fro80QD) to its double covering
group SpinD). In the dimensions under consideration, the groups &piff and
Spin(D) are isomorphic to the following ones

ul ul
d=3+1 UesSL2C), =<u; u;), ujui —udui =1, (2.13)
1 2

u u
d=2+1: UeSUlL1l), U= (Eil 62)’ Ul — 2 =1, (2.14)
2 1

C
Il

D=3 UeSy), :
—u2

cosr(%)) sinh(%) ) ’ (2.16)

d=1+1: UeSA1,1), U=
aL.1) (sinh(% cosh(%)

_ 5 [ cog%) sin(3)
d=2 UeSqQ), U= (_Sin(%) o) ) (2.17)

Considering nonhomogeneous transformations and retaining both eldsnants
—U, we go over from the groupslg(D, 1) andMg(D) to the groups

M(D, 1) = T(d) x) Spin@,1) and M(D) = T(D) x) Spin(D)

respectively. This allows us to avoid double-valued representations for half-integer
spins. Thus, there exists a one-to-one correspondence between the elgofents

u u
( ; ﬁz), Ui+ uz? =1, (2.15)
1

5We denote the complex conjugation by an asterisk atop the respective quantities.
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the groupsM (D, 1), M(D), and two 2x 2 matricesg <> (A, U). The first one,

A, corresponds to translations and the second bhesorresponds to rotations.
Equation (2.10) describes the actionM{D, 1) on Minkowski space [the latter
is a coset spack!(D, 1)/Spin(D, 1)]. As a consequence of (2.10), we obtain the
composition law and the inverse element of the groM®, 1), M(D):

(A2, Uz)(Ag, Ug) = (U2A1U2T + A, UnUp), gt =(-UtAuhHiuh.
(2.18)

The matricedJ in the dimensions under consideration satisfy the following iden-
tities:

U eSL2 C): oUoy=(UT) (2.19)
UeSUL1): oiUoi=U, olUor=UT)L osUos= UL (2.20)
UeSU2: alor=UT)yt=U. (2.21)

An equivalent picture arise in terms of the matricés= x*o,. Using the
relation X = 0, X" 0, the transformation law foX, in (2.10), and the identity
(2.19), one gets

X =@UhHXut+A (2.22)

Thus, X are transformed by means of the elemems(U)~1). The relation
(A, U) = (A, (UH)™1) defines an automorphism of the PoiregroupM (D, 1).

In the Euclidean case, the matrid¢sre unitary, and the latter relation is reduced
to (A,U) — (—A,U).

The representation of the Poineatransformations in the form (2.10) is
closely related to a representation of finite rotation®&%rin terms of the Clifford
algebra. In higher dimensions, the transformation law has the same form, where
Ais a vector element arld corresponds to an invertible element (spinor element)
of the Clifford algebra (Benn and Tucker, 1988). The representation of the finite
transformations in the form (2.10) can be useful for spin description by means of
Grassmannian variabléssincet ando& give a realization of the Clifford algebra
(Berezin, 1966).

2.2. Regular Representation and Scalar Functions on the Group

It is well known (Vilenkin, 1968; Vilenkin and Klimyk; Zhelobenko and
Schtern, 1983) that any irrep of a gro@is contained (up to the equivalence)
in a decomposition of a GRR. Thus, the study of GRR is an effective method for
the analysis of irreps of the group. Consider, first, the left GRR)), which is
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defined in the space of functiorf€go), go € G, on the group as

Ti(9) f(go) = (%) = f(g7'g0), geG. (2.23)
As a consequence of the relation (2.23), we can write
f(9) = f(%). %= 9%. (2.24)

Let G be the groupM (3, 1), and we use the parametrization of its elements by
two 2 x 2 matrices [one Hermitian and another one fr8h{2, C)], as described
in the previous section. With such a parametrization, we use the notations

g< (AU), g < (X 2), (2.25)

where A and X are 2x 2 Hermitian matrices antl, Z € SL(2, C). The map
0o <> (X, Z) creates the correspondence

Jo < (X,2,2), wherex =(x"), z=(z), z=(z,),
w=0123 «oa=12 2z712,—2z, =1, (2.26)
by virtue of the relations

a il) €SI, C). (2.27)

X=xto,, Z= (22 2
On the other hand, we have the correspondegce (X', Z, Z),
9 = 9% < (X', Z) = (A,U)(X, Z) = (UXU" + A,UZ) « (X, Z, 2),
X"o, = X' =UXU' + A=

X" = (Ag)“x" +a", A < U e SL2,C), (2.28)

Z, Z
(} ‘}):Z/:UZ=>
5 7
z,=Ulzs, z,=Ufzs, U=()), zz,-27=1 (229)

Then the relation (2.24) takes the form

f'(X',Z,2) = f(x, z, 2, (2.30)
X" = (Ag)x” +a% A < U e SL2,C), (2.31)
Z,=Ufz. z,=Ufz,, 2z,—-2z=77-27=1 (2.32)

The relations (2.30)—(2.32) admit a remarkable interpretation. We may treat
x andx’ in these relations as position coordinates in Minkowski space (in different
Lorentz reference frames) related by proper Poiatiarisformations, and the sets
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(z, 2) and &, Z’) may be treated as spin coordinates in these Lorentz frames. They
are transformed according to the formulas (2.32). Carrying the two-dimensional
spinor representation of the Lorentz group, the variablesd z are invariant
under translations, as one can expect for spin degrees of freedom. Thus, we may
treat setsX, z, z) as points in a position—spin space with the transformation law
(2.31), (2.32) under the change from one Lorentz reference frame to another. In
this case, Eq. (2.30)—(2.32) represent the transformation law for scalar functions
on the position—spin space.

On the other hand, as we have seen, the gets g) are in one-to-one corre-
spondence to the groud (3, 1) elements. Thus, the functiorf¢x, z, z) are still
functions onthis group. Thatis why we often call them scalar functions on the group
as well, remembering that the term “scalar” came from the above interpretation.

Remember now that different functions of such type correspond to different
representations of the groug (3, 1). Thus, the problem of classification of all
irreps of this group is reduced to the problem of a classification of all scalar func-
tions on position—spin space. However, for the purposes of such a classification, it
i*s Qatural to restrict ourselves to scalar functions that are analytic batl and in
Z, Z (or, simply speaking, that are differentiable with respect to these arguments).
Such functions are denoted byx, z, z, 2 Z) =f(x,2),z=(z z 2 2).

Consider the right GRRR(g). This representation is defined in the space of
functions f(go), 9o € G, as

Tr(9) f(90) = f'(90) = f(%09). ge€G, (2.33)

As a consequence of the relation (2.33), we can write

f'(g) = (%), gp=0og " (2.34)

In the case of the proper Poineagfoup, the right transformations act gn<«
(X, Z) according to the formula

% =00t o (X, Z) = (X+Z'AZ7HT, zZu™). (2.35)

Hencex = x* + L4a", wherethe matrix dependsom, o, L), = Z~%5,, (Z71)'.

The transformations fox, zdo not admit an interpretation similar to the left GRR
case. In particular, the transformation law fordoes not look like a Lorentz
transformation. On the other hand, the study of the right GRR is useful for the
classification of the Poincargroup irreps since the generators of the right GRR
are used to construct complete sets of commuting operators on the group.
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2.3. Generators of Generalized Regular Representations

Generators of the left GRR correspond to translations and rotations. They can
be written as

p, = —id/ax", j;w = I:/w + é/wf (2.36)

whereL ., = i(x,d, — x,9,) are angular momentum operators &g are spin
operators depending arandd/dz. An explicit form of the spin operators is given
in Appendix A.

The algebra of the generators (2.36) has the form

[P B =0, [Juws Byl = i (0o Py — 01ip ).
[j,u.vv jpa] = invp jua - inﬂp jua - inva jp,p + I Nuo jup~ (237)

In the space of Fourier transforms

o(p,2) = (27)792 / f(x, 2)€P* dx (2.38)
the left GRR acts as [one has to use (2.23)]

TL(Q)e(p.2) =€ p(p,g7%2), p=glpe P =U"PU™N,
P = paot. (2.39)

One can see that détand detP = p? are invariant under the transformatiéns
(2.39) and thap? is an eigenvalue of the Casimir operafit

For the groupaM (D) there are two types of representations, depending on
p%: (1) p? # 0, (2) p?> = 0; then allp, = 0, and irreps are labeled by eigenvalues
of Casimir operators of the rotation subgroup.

For the groupMM (D, 1), there are four types of representations, depending on
the eigenvalues? of the Casimir operatop?: (1) m? > 0, (2) m? < 0 (tachyon),
(8) m? =0, pp # 0 (massless particle), (40° = po = O; irreps are labeled by
eigenvalues of the Casimir operators of the Lorentz subgroup, and the correspond-
ing functions do not depend on

For decomposing the left GRR, we construct a complete set of commuting
operators in the space of functions on the group. Together with the Casimir opera-
tors, some functions of right generatbreay be included in such a set. Therefore,
it is necessary to know the explicit form of right generators. As a consequence of

6p2? = 9"V p,,p, . Since we do not usp with the upper indics, this does no lead to a misunderstanding.

"The physical meaning of the right generators is not so transparent. However, one can remember
that the right generators &Q3) in the nonrelativistic rotator theory are interpreted as operators of
angular momentum in a rotating body-fixed reference frame (Biedenharm and Lauck, 1981; Landau
and Lifschitz, 1977; Wigner, 1959).
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the formulas

Tr(9) (X, 2) = f(xg,2g), xg< X+ZAZ, zg< ZU, (2.40)

TR(Q)¢(p, 2) = € ¥ Pp(p,2g), a < A =ZAZ (2.41)

one obtains

bR =-(L@)p. Jn =8 (2.42)
whereL € SQD, 1) [or L € SQOD, 1) in the Euclidean case]. The operators of
right translations can also be written in the foRfR = —Z-1P(Z~1); operators
S, andS,, are leftand right generators of Spid(1) [or Spin(©)] and depend on
z only. All the right generators (2.42) commute with all the left generators (2.36)
and obey the same commutation relations (2.37).

In accordance with theory of harmonic analysis on Lie groups (Barut and
Raczka, 1977; Zhelobenko and Schtern, 1983), there exists a complete set of
commuting operators, which includes Casimir operators, a set of the left generators
and a set of right generators (both sets contain the same number of generators). The
total number of commuting operators is equal to the number of parameters of the
group. In a decomposition of the left GRR, the nonequivalent representations are
distinguished by eigenvalues of the Casimir operators, equivalent representations
are distinguished by eigenvalues of the right generators, and the states inside the
irrep are distinguished by eigenvalues of the left generators.

AF!n particular, Casimir operators of the spin Lorentz subgroup are functions
of S,, (or S,,) and commute with all the left generators (with left translations
and rotations), but do not commute with generators of the right translations. These
operators distinguish equivalent representations in the decomposition of the left
GRR. Aspects of the theory of harmonic analysis on theBand 2+ 1 Poincag’
groups were considered in Rideau (1966), Hai (1969, 1971), and Gitman and
Shelepin (1997), respectively.

If GRR acts in the space of all functions on the gr@pa regular represen-
tation acts in the space of functioh$(G, ), such that the norm

/ (9) f (0) du(g) (2.43)

is finite (Vilenkin and Klimyk, 1991; Zhelobenko and Schtern, 1983), whier(ey)

is an invariant measure on the group. The regular representation is unitary, as
follows from (2.43) and from the invariance of the measure. However, we will also
use nonunitary representations (in particular, finite-dimensional representations of
the Lorentz group). Therefore, we consider the GRR as a more useful concept.
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2.4. Fields on the Poincae”Group

As we have shown that the relations associated with the left GRR (2.23) define
the transformation law for coordinates, ) on the position—spin space under the
change from one Lorentz reference frame to another. The equations

f'(x',2) = f(x,2), (2.44)

X =gx=Ax+a< UXU' + A 7Z=gzo UZ (2.45)

define a scalar field on this space (i.e., a scalar field on the Peigcaup). In
contrast to a scalar field on Minkowski space, this field is reducible with respect
to both mass and spin.

We consider the transformation lawsondz in various dimensions in more
detail.

Inthe two-dimensional case, matricgslepend on only one parameter [angle
or hyperbolic angle, see (2.16), (2.17)]. The functions on the group depeneton
(x*) andz = € [or x = (x¥) andz = € in the Euclidean case]; it is appropriate
to consider these functions as functions of a real paramet@ectly.

In the three-dimensional case, according to (2.14) and (2.15),

D =3: zz(z1 _*2'2>; d=241: zz<z1 5'2>, detz = 1.
L 4 Z; Z3
(2.46)

The furlctionsf(x, ) depend orx = (x*) [in the Euclidean case = (x¥)] and
z = (z, 2), wherez are the elements of the first column of the matrix (2.46). Let
us write the relation (2.45) fat = 2 + 1 in componentwise form

% -
X”’me = ng’uo‘ﬂﬂ/'g Ug + aﬂaﬂada (247)

z,=Ufz. 7,=ULz;, z°=U528, Z°=(U *1)‘;; 76, (2.48)
Undotted and dotted indices correspond respectively, to spinors transforming by
means of the matrik and, the complex conjugate matrix. The invariant tensor
0,«¢ has one vector index and two spinor indices of distinct types.

For the groupM(3, 1), the matrixZ, detZ = 1, has the form (2.27); the
elementgz* andz® of the firstand second columns of the matrix (2.27) are subjected
to the same transformation law. The functioh&, z) depend orx = (x*) and
z=(z, Z, z, i). The main reason to consider not real parameters (e.g., real and
imaginary parts of, z), butz, z and 22 is the fact that the complex variables
are subjected to a simple transformation rule. The use of spaces of analytic and
antianalytic functions is suitable for the problem of decomposing the GRR.



614 Gitman and Shelepin

Ac*cording to (2.45) and (2.22), one may write the transformation law of
xX*, Z,, Z; in componentwise form

.
X" Opas = fo"oﬂﬁﬁ Ug + a¥0u04.

v =

X" g = (0 HExaPP U + ot (2.49)

7,=Ufz, z,=UlZ z*=UTZ, Z*=U"N;2. (250
It is easy to see from (2.49) that the tensors
Opaic = (O )azs T2 = (37, (2.51)

are invariant. These tensors are usually used to convert vector indices into spinor
ones and vice versa or to construct vectors from two spinors of different types:

1. 1 oun
X = 50" Xaay  Xaa = OuaaX, QM = 502,25 (2.52)

2 2
In consequence of the unimodularity 0k22 matricesJ , there exist invariant
antisymmetric tensors® = —gf¥ g% = —ePY 12 = 12 — 1 andej; = €35 =

—1. Spinor indices are lowered and raised according to the rules
2, = eqp?l, 2% ="z, (2.53)

and in particulab . = 0,4«. Below we will also use the notatiods = 9/9z%,
3% = 3/92, and correspondingl§® = —3/9z,, 3% = —d/d74.

In the framework of the theory of the scalar functions on the Poenges(p,
a standard spin description in terms of multicomponent functions arises under the
separation of space and spin variables

Sincez is invariant under translations, any functi¢(z) carries a representa-
tion of the Lorentz group. Let a functiofi(h) = f(x, z) allow the representation

f(x,2) = ¢"(@yn(x), (2.54)

wheregp"(z) form abasis in the representation space of the Lorentz group. The latter
means that one may decompose the functigt{g’) of the transformed argument
Z = gzin terms of the functiong"(2):

¢"(2) = ¢' @L(V). (2.55)

An action of the Poincargroup on a lin@"(z)¢"(z) is reduced to a multiplication
by the matrixL (U), whereU e Spin(D, 1), ¢(Z') = ¢(2)L(U).
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Comparing the decompositions of the functiéf{x’, Z) = f(x, z) over the
transformed basig(z') and over the initial basig(z),

f'(x’. Z) = (@)’ (x) = @ L(U)¥'(X) = (@ (x).

whereys (x) is a column with componenig,(x), one obtains

¥'(x) = LUy (), (2.56)

that is, the transformation law of a tensor field on Minkowski space. This law
corresponds to the representation of the Pomgaoup acting in a linear space of
tensor fields as followsE (g) v (x) = L(U Yy (A~1(x — a)). According to (2.55)
and (2.56), the functiong(z) and(x) transform under contragradient represen-
tations of the Lorentz group.

For example, let us consider scalar functions on the Paérgraipf, (X, z) =
Yo (X)2* and fa(X, 2) = ¥, (X) 7« which correspond to spinor representations of
Lorentz group. According to (2.54) and (2.56),

LK) = UBps(x). 7a(X) = UF i (). (2.57)

The producty, (x)y " (x) is Poinca€ invariant.

Thus, tensor fields of all spins are contained in the decomposition of the field
(2.44) on the Poincargroup, and the problems of their classification and of the
construction of explicit realizations are reduced to the problem of the decomposi-
tion of the left GRR.

Notice that above we reject the phase transformations, which correspond
to U = €¢. These transformations of th&(1) group do not change space-time
coordinatesx, but change the phase of According to (2.55) and (2.56), this
leads to the transformation of the phase of the tensor field compotig(3.
Taking account of this transformation means considering the functions on the
groupT(d) x) Spin(D, 1) x U(1).

2.5. Automorphisms of the Poinca€g Group and Discrete
Transformations: P,C, T

Let us consider elements<> (A, U), go <> (X, Z) of the Poincag group
M(D, 1). Itis easy to see that the transformations

(A U)— (A (U™, (X,2)= (X, (Z)™), (2.58)

(A U) = (A U), (X 2Z)— (X,2), (2.59)
(A U) = (=AU), (X, 2)— (=X, 2) (2.60)
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are outer involutory automorphisms of the group and generate a finite group con-
sisting of eight elements.

The automorphisms (2.58)—(2.60) define discrete transformations of space-
time and spin coordinates z. The substitution of transformed coordinates into
the functionsf (x, z) [or into the generators (2.36)] leads to a change in sign of
some physical variables. (Notice that the substitution both into the functions and
into the generators leaves signs unaltered.)

The space reflection (or parity transformatiBjis defined by the relations
x0 — x0 xk — —xK or X — X. If X is transformed by means of the group ele-
ment (A, U), thenX is transformed by means of the group element(U 1)~1); see
(2.22). Therefore, the space reflection represents a realization of the automorphism
(2.58) of the Poincargroup

(X,2) & (X, (z)™. (2.61)

Thus, under the space reflectiargndz have to be changed in all the constructions
according to (2.61). In particular, for the momenté#n= p,c*, we obtainP —
P, whereP = p,o”. The generators of the rotations are not changed, and the
generators of the boosts change their signs only.

The time reflection transformatioi’ is defined by the relatiorx* —
(—1)°=x*, or X - —X, and corresponds to the composition of automorphims
(2.58) and (2.60):

(X, 2) 5 (=X, (zH™. (2.62)

InversionP T/, (X, Z2) T (=X, Z), corresponds to the automorphism (2.60).
Automorphism of the complex conjugation (2.59) means the substitution
i — —i,

f(x,2) S f(x, 2). (2.63)

One can show that in the framework of the characteristics related to the Roincar”
group, this transformation corresponds to the charge conjugation. Both the trans-
formation (2.63) and the charge conjugation change the signs of all the generators,
P, = —P.. L = —L,0. Suv = —S,.. Below, considering RWE, we will see
that the transformation (2.63) also changes the sign of the current \jéctor

The time reversar is defined by the relatioX — — X (the time reflection
transformatiorT ), with the supplementary condition of energy sign conservation,
which meansP — P. Therefore, we have the conditiorfs, — —(—1)p,,
L, — —(=1ywtdol  and§,, — —(—1y»*%§, . The transformatioC T’
obeys these conditions.

However, it is known (Kemmeet al, 1959; Umezavat al, 1954) that it
is possible to give two distinct definitions of the time-reversal transformation
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obeying the above conditions. Wigner time revefigaleaves the total charge (and
correspondinglyj ®) unaltered, and reverses the direction of curiénSchwinger
time reversallse, (Schwinger, 1951) leaves the currgfitinvariant and reverses
the charge.

The transformatioi€ T’ changes the sign gi° and therefore can be identi-
fied with Schwinger time reversalgcs, = CT'. The CPTs¢h, transformation cor-
responds to the inversioX( Z) — (—X, Z). The Wigner time reversaly and
CPTyw transformation can be defined considering both outer and inner automor-
phisms of the proper Poin@group (Buchbindest al,, 2000b). Namely\CP Ty =
I« I, wherel, is defined as

(X,2) % (X, Z(=ion)) (2.64)

and is a composition of the inner automorphisk Z) — (X', (z7)~) and of
the rotation by the angle. Wigner time reversal is the composition of the above
transformations]yy = |I,CT = |, Tsch

The improper Poincargroup is defined as a group that includes continuous
transformations of the proper Poineggfoupg € M(D, 1) and the space reflec-
tion P.

In the Euclidean case, the space reflection is reduced to the substitution

(X, 2) £ (=X, Z). The charge conjugation inverts the momentum and spin ori-
entation.

2.6. Equivalent Representations

Inthe decomposition of the scalar field (2.44) on the Pomgaoup (or, which
is the same, of the left GRR), there are equivalent representations distinguished
by the right generators.

Remember that representationgg) and T»(g) acting in linear spacek;
and L, respectively, are equivalent if there exists an invertible linear operator
A: L1 — L, such that

AT1(9) = T2(9)A. (2.65)

In particular, the left and right GRR of a Lee gro@are equivalent. The oper-
ator (Af)(g) = f(g~?1) realizes the equivalence (Vilenkin, 1968; Zhelobenko and
Schtern, 1983).

Let us consider function§(x, z) belonging to two equivalent representations
in the decomposition of the left GRR of the grodfy(D, 1) [or M(D)]. If the
representations$; (g) andT,(g) acting in the different subspacks andL, of the
space of functions on the group are equivalent, then

ATl(g) fl(X7 Z) = TZ(g)Afl(X’ Z)’ fZ(X’ Z) = Afl(x7 Z)’
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wherefi(x, z) € Lyandfy(X, 2) € L,. In particular, if the operato: L; — Lsis

a function of the right translation generatqﬁ%, then one cannot map the function
f1(X, 2) to the function f,(x, z) by the group transformation, which leaves the
interval square invariant. Therefore, the physical equivalence of the states, which
corresponds to equivalent irreps in the decomposition of the scalarffigld),

is not evident.

Below we will consider a number of examples in various dimensions. In
particular, in the framework of the representation theory of the three-dimensional
Euclidean groupM (3), irreps characterized by different spins (but with the same
spin projection on the direction of propagation) are equivalent. There are no contra-
dictions in the fact that in this case, different particles are described by equivalent
irreps since itis not possible to map corresponding wave functions into one another
by the rotations or translations of the frame of reference.

In some cases, more general considerations may be based on the represen-
tation theory of an extended group. In the framework of the latter, there are two
possibilities: either irreps labeled by different eigenvalues of right generators of the
initial group are nonequivalent, or some equivalent irreps of the initial group are
combined into one irrep. For example, in nonrelativistic theory, spin becomes the
characteristic of nonequivalent irreps after the extensiavi () up to the Galilei
group. In 3+ 1 dimensions, fom > 0, the proper Poincargroup representations
characterized by different chiralities are equivalent. If we go from the Lorentz
group to the grousQ(3, 2), then all states characterized by spiwith different
chiralitiesi, A = —s, —s+1, ..., s, are combined into one irrep.

The space of function§(x, z) contains functions transforming under equiva-
lent representations of the proper Poircgroup and is sufficiently wide to define
discrete transformations, including space reflection, time reflection, and charge
conjugation. These discrete transformations associated with automorphisms of
the group also combine equivalent irreps of the proper Poéingesip into one
representation of the extended group. For example,-4#nl3dimensions, space
reflection combines two equivalent irreps of the proper group labelediog—A
into one irrep of the improper group.

As we will see below, the different types of RWE (finite-component and
infinite-component equations) are also associated with equivalent representations
in the decomposition of the left GRR.

Thus, initially, it is appropriate to consider all representations in the decom-
position of the scalar field on the Poineagfoup, including equivalent ones. In
this sense we note the close analogy with the theory of the nonrelativistic three-
dimensional rotator (Biedenharn and Louck, 1981; Landau and Lifschitz, 1977;
Wigner, 1959). In the latter theory, one considers functions on the rotation group
SUY2) and two sets of operators: angular momentum operators in an inertial labo-
ratory (space-fixed) frame (left generatciqu) and angular momentum operators
in a rotating (body-fixed) frame (right generato?%). The classification of the
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rotator states is based on the use of the complete set of commuting operators,
which, besides? andJ}, includes alsdl;. The operatod; distinguishes equiv-

alent representations in the decomposition of the left GGR of the rotation group
and corresponds to a quantum number that does not depend on the choice of
the laboratory frame. This quantum number plays a significant role in the theory
of molecular spectra. In the-8 1-dimensional case, there exist two analogs of
j?, namely B} = §§3 and§ = §2, which act in the space of functions on the
Poincag group. As we will see below, the first may be interpreted as a chirality
operator, and the second allows us to distinguish particles and antiparticles.

2.7. Quasiregular Representations and Spin Description

The consideration of GRR of the Poineagfoup ensures the possibility of a
consistent description of particles with arbitrary spin by means of scalar functions
onRY x Spin(D, 1). At the same time, for the description of spinning particles,
it is possible to use the spac®8 x M, whereM is a homogeneous space of the
Lorentz group (one- or two-sheeted hyperboloid, cone, complex disk, projective
space, and so on); see, for examplacB and Kihlberg (1969), Kihlberg (1970),
Boyer and Fleming (1974), Wigner (1963), Kim and Wigner (1987), Biedenharn
et al. (1988), Haslewicz and Siemion (1992), Kuzerdtal. (1995), Lyakhovich
et al. (1996), Deriglazov and Gitman (1999), Drechsler (1997), and Jackiw and
Nair (1991), Plyushchay (1991, 1992), Cortes and Plyushchay (1996) fortHe 3
and 2+ 1-demensional cases, respectively. In some work, fields on homogeneous
spaces are considered; in other work, such spaces are treated as phase spaces of
a classical mechanics, and the latter are treated as models of spinning relativistic
particles.

These spaces appear in the framework of the next group-theoretic scheme.
Let us consider the left quasiregular representation of the P@iggatip

T(9)f(goH) = f(g'gH), H cSpin@D, 1). (2.66)

H is a subgroup of Spiilf, 1), and since is invariant under right rotations [see
(2.40)],

0o < (X,Z), goH <« (X, ZH).

Therefore, the relation (2.66) defines the representation of the Peigoaup in
the space of function$(x, zH) on

RY x (Spin(D, 1)/H). (2.67)
In the decomposition of the representation in the space of functions orCsdij(
H [or RY x (Spin(D, 1)/H)], there is, generally speaking, only part of the irreps

of the Lorentz (or Poinca) group. In particular, the cas¢ ~ Spin(D, 1) corre-
sponds to a scalar field on Minkowski space. The classification and description
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of homogeneous spaces of3lL Poinca€” and Lorentz groups can be found in
Finkelstein (1955), Bacry and Kihlberg (1969), and Gel'fanal. (1966).

Thus, the consideration of quasiregular representations allows one to con-
struct a number of spin models classified by subgrddps Spin(D, 1). But the
existence of a nontrivial subgroup leads to the rejection of part of the equivalent
(with different characteristics with respect to the Lorentz subgroup) or, possibly,
nonequivalent irreps of the Poineagfoup.

2.8. Relativistic Wave Equations

The problem of RWE construction for particles with arbitrary spin in various
dimensions is far from resolved and continues to attract significant attention. To
describe massive particles of sgiin four dimensions, one usually employs the
equations connected with the representatign) @nd &t 2E) of the Lorentz
group (see, e.g., Ohnuki, 1988; Buchbinder and Kuzenko, 1995). These equations
admit Lagrangian formulations (Fierz and Pauli, 1939; Singh and Hagen, 1974a,
b), butfors > 1, minimal electromagnetic coupling leads to noncasual propagation
(Wightman, 1978; Zwanziger, 1978). On the other hand, all known equations with
casual solutions either have a redundant number of independent components [as
the equations (Hurley, 1971; Kruglov, 1999) for representatiefy and (0s)
have] or describe many masses and spins simultaneously, as the Bhabha equations
(Lubanski, 1942; Bhabha, 1945; Krajcik and Nieto, 1977) do. Besides the problem
of interaction of higher spin fields, one may mention attempts to construct RWE
with a completely positive energy spectrum (Majorana, 1932; Gel'fandl,,

1963; Stoyanov and Todorov, 1968; Dirac, 1971, 1972a) and RWE for fractional
spin fields (Jackiw and Nair, 1991; Plyushchay, 1991, 1992; Gitman and Shelepin,
1997).

With respect to the mathematical methods used, it is possible to divide ap-
proaches to RWE construction into three groups.

The firstapproach, which follows Dirac (1936), Fierz and Pauli (1939), Rarita
and Schwinger (1941), and Bargmann and Wigner (1948), deals with equations
for symmetric spin tensors. It allows one to describe fields with fixed mass and
spin and also to construct RWE that admit Lagrangian formulation; however, as
mentioned above, fa > 1, we face the problem of noncasual propagation.

The second approach, which follows Kemmer (1939), Lubanski (1942),
Bhabha (1945), Harish-Chandra (1947), Gelfand and Yaglom (1948), and
Gel'fandetal.(1963) is devolted to studying RWE of the forai{(p,, — 2)y(X) =
0, and is based on the use of algebraic propertiesmwiiatrices. These equations
admit Lagrangian formulation; however, fer> 1, they describe a nonphysical
spectrum of particles: a decreasing mass with increasing spin.

The third approach is connected to the use of supplementary variables to
describe spin degrees of freedom and initially was suggested for RWE with a
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mass spectrum (Ginzburg and Tamm, 1947; Ginzburg, 1956). It was used for
constructing positive-energy wave equations (Dirac, 1971, 1972a; Stoyanov and
Todorov, 1968), equations describing gauge fields (Vasiliev, 1992, 1996), and
anyon equations (Gitman and Shelepin, 1997; Jackiw and Nair, 1991; Plyushchay,
1991, 1992).

From the point of view of the approach that we developed above, the problem
of constructing RWE looks like the selection of invariant subspaces in the space
of functions on the group.

The classification of the scalar functions can be based on the use of the oper-
atorsC, commuting withT,_ (g) (and correspondingly with all the left generators).
For these operators, as a consequence of the relé}ﬂ(m z) = cf(x, 2), one
obtains tha€ f'(x, z) = cf'(x, z), wheref'(x, z) = T (g) f (X, Z). Therefore, dif-
ferent eigenvalues correspond to subspaces that are invariant with respect to the
action of T, (g). The invariant subspaces correspond to subrepresentations of the
left GRR.

In addition to the Casimir operators, for the classification, one may use the
right generators since all the right generators commute with all the left generators.
The right generators, as mentioned, distinguish equivalent representations in the
decomposition of the left GRR.

There is some freedom to choose commuting operators that are functions
of the right generators of the Poineagfoup. We will use only functions of the
generators of the right rotations (2.42), in particular, for coordination with the
standard formulation of the theory.

Following the general scheme of harmonic analysis,MdD, 1), one may
consider the system consistingdéquations

Cuf(x,2) = f(x, 2), (2.68)

whereC, are the Casimir operators of the Poiregroup and of the spin Lorentz
subgroup. These operators constitute a subset of the complete set of commuting
operators on the Poinagroup. This is the system we will use for=2+ 1

below.

On the other hand, there exist additional requirements associated with the
physical interpretation. In the first place, in the massive case, the system must
be invariant under space reflection in order to describe states with definite parity.
Second, it is often supposed that the system contains an equation of first order in
a/0t [the approach based on the first-order equations advocated mainly in Bhabha
(1945), Krajcik and Nieto (1976), and Biritz (1979).

8As a consequence of relativistic invariance, an equation lineaydn can be either first order or
infinite order in space derivatives [square-root Klein—-Gordon equation (Beegk| 1991; Samarov,
1984; Smith, 1993; Sucher, 1963)]. The latter type of equation is naturally obtained in the theory of
Markov processes for probability amplitudes (Shelepin, 1997).
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The Casimir operators of the Poineagfoup are functions of the generators
P, andj,w. In odd dimensions, there exists a Casimir operator lineg isince
the invariant tensae*¥ also has an odd number of indices. As we will see below,
in 2+ 1 dimensions, the system (2.68) is invariant under space reflections.

In even dimensions, the invariant tengdr also has an even number of
indices, and therefore a Casimir operator lineapjpdoes not exist. In even
dimensions under space reflection, the irrep of the proper Peigcawp is mapped
onto an equivalent irrep labeled by other eigenvalues of the Casimir operators of
the spin Lorentz subgroup. The linear combinations of basis elements of these
two irreps form the bases of twd = 41 irreps labeled by intrinsic parity of the
improper Poincar group including space reflection.

In even dimensions, there exists an opera(’rbr_ pﬂr‘“, where ['* =
I'*(z, 3/0z), commuting with all left generators and connecting the states that
are interchanged under space reflections. In contrast to the Casimir operators, this
operator is not a function of generators of the Poiagmoup and does not commute
with some right generators. A first-order equation

p.I*f(x, 2) = xf (X, 2) (2.69)

connects two irreps of the gro (D, 1) characterized by different eigenvalues

of the Casimir operator of the spin Lorentz subgroup. Equations (2.68) and (2.69)
have the same form; namely, the invariant operator acts on the scalar function
f (x, ) on the grougM (D, 1). The addition of the operatof8 means in fact the
extension of the Lorentz group to a wider group [in particular, in four dimensions,
to the 3+ 2 de Sitter grousQ(3, 2)]. Equation (2.69) replaces equations of the
system (2.68), which are not invariant under space reflection.

In the approach under consideration, equations have the same form for all
spins. The separation of the components with fixed spin and mass is realized by
fixing eigenvalues of the Casimir operators of the Poiecaoup (or the operator
f)uf“). Fixing the representation of the Lorentz group under whi@transforms
in the decomposition

f(x,2) = ¢"(@yn(x),

one obtains RWE in standard multicomponent form. This fixing is realized by the
Casimir operator of the spin Lorentz subgroup.

There are two types of equations to describe one and the same spin, one on
functionsf (x, z), wherep"(z) transforms under the finite-dimensional nonunitary
irrep of the Lorentz group, and another on functidr(g, z), where¢"(z) trans-
forms under the infinite-dimensional unitary irrep of the Lorentz group. In the
matrix representation, these equations are written in the form of finite-component
or infinite-component equations, respectively. The latter type of equation [e.g.,
the Majorana equations (Fradkin, 1966; Gel'fastdal, 1963; Majorana, 1932;
Stoyanov and Todorov, 1968)] is interesting because it gives the possibility to
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combine relativistic invariance with a probability interpretation. The desirability
of this combination was emphasized in Dirac (1972b).

Let us briefly consider the possibility of the existence of particles with frac-
tional spin. The restrictions on the spin value arise in the representation theory
of M(D) andM(D, 1) if one restricts the consideration to (1) unitary, (2) finite-
dimensional (with respect to the number of spin components), or (3) single-valued
representations. (The latter means that the representation acts in the space of single-
valued functions). The restriction to single-valued functions (often supposed in
mathematical papers related to a classification of representations) is omitted in
some physical problems, which allows one to consider particles with fractional
spin (anyons). Thus, we will also consider multivalued representatioivs( bY)
and M(D, 1) in the space of the function§(x, z) on the group. These repre-
sentations correspond to single-valued representations of the universal convering

group.
3. TWO-DIMENSIONAL CASE

3.1. Field on the GroupM(2)

Inthe two-dimensional case, the general formulas become simpler. The matri-
cedU (2.17) of theS((2) subgroup depend on only one parameter, namely the angle
¢, 0 < ¢ < 4r. Using the correspondengg <> (X, Y(6/2)), g < (A, U(¢/2)),
one may write the action of GRR:

TL(@) f(x,0/2) = f(X',0/2—¢/2), (3.1)
X1 = (X1 — a1) cosg + (X2 — @) sing, X, = (X2 — az)
cosp — (X1 —ag) sing, Tr(9)f(x,0/2)= f(X",0/2+ ¢/2), (3.2)
X{ = X1 + & C0SY — @ Sinf, X; = Xz + & CosH + a; Sinek.

Left and right generators that correspond to the parameétensi¢ are given by

py=—idk, J=L+S (3.3)
AR S ~R ~
P =iA0, I =-S5 (3.4)
where
I:—i(xa_xa)—_ii é——ii A= cosf  sind
e PR TN ~\ —sind cosh /-

The functions on the group are those®hx St, and the invariant measure on the
group is

du(x, 0) = (471)_1dX1 ddd, —oco<x<4oo 0<0 <4rm.
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We will consider two complete sets of commuting operatpys,, Sandp?, J, S.
The eigenfunctions of these operators are

(x1%20 | pLP2S) = (27) " explpyXa + ip,X2 + is6), (3.5)
(rof | pis) = (2r) 4" 3 (pr) exp(lp) exp(so), (3.6)
wherel = j — sis the orbital momentum andi(pr) is the Bessel function. Irreps

are labeled by eigenvalug@é of the Casimir operatop®. For p # 0, the represen-
tation is irreducible; fop = 0, it decomposes into one-dimensional irreps of spin
subgroupJ (1), which are labeled by eigenvalugsf the spin projection operator
(or, simply speaking, the spin operaték)

For p # 0, the representations characterized by the spiagds = s+
n, wheren is an integer, are equivalent. The operafocommutes with all left
generators, but does not commute with the generators of right translations, which
mix spin and space coordinates. Operaiffs= pf — ip% and pR = pf + ip}
are raising and lowering operators with respect to spin

PR | pLp2s) = (ipy & P2) | pLp2s & 1). 3.7)

Right translations do not conserve both interval (distance) andsspin
The functions (3.6) satisfy the relations of orthogonality and completeness
. : S(p—p
/(ij| r0)(red | pjsirdrde do = %8”/853, (3.8)

8r —r’)
r

/ Z (re0 | pis)(pis | rev) dp= 8(p —¢)8(0 —0). (3.9

This means that we have obtained the decomposition of the left regular representa-
tion. The spin operatd%distinguishes equivalentirreps (except for the qase0,

when irreps are labeled by its eigenvalues). The decomposition of the functions
of # on the eigenfunctions of corresponds to the Fourier series expansion of
functions on a circle.

Thus, the representations &(2) are single-valued for integer and half-
integers. Fractional values of correspond to multivalued representations. Irreps
are equivalent if they are labeled by the samg 0 and the difference — s’ = n
is an integer. For fixep # 0, there are only two nonequivalent single-valued
representations, which correspond to integer and half-integer spin. Nonequivalent
multivalued representations for fixgo£ O are labeled b € [0, 1), 5 = s — [s].

3.2. Field on the GroupM(1, 1)

MatricesU (2.16) of theS((1, 1) subgroup, which isisomorphic to an additive
group of real numbers, depend on the hyperbolic apdlésing the correspondence
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o < (X, Z(6/2)), g < (A, U(¢/2)), we write the action of GRR:
T(Q)f(x,0/2)= f(X,0/2—¢/2), (3.10)

x? = (x° — a% coshy + (x! — al) sinhg,
xt = (x —al) coshyp + (x° — a%ssinhg,
Tr(@) f(x, 6/2) = f(X",6/2+ ¢/2), (3.11)
X" = x° 4+ a°coshy — alsinho,
x"t = x! 4 al coshy — a’sinho.

The functions on the group are the thosekdnx R, and the invariant measure on
the group can be written as

du(x, ) = ddxids, —oo <X, 6 < +oo.

As above, we will consider two complete sets of commuting operajrs),, S
and p?,J, S, whereJ = L + S, L =i(x%° + x'8%), S= —id/00. The eigen-
functions of the first set are

(x°x6 | p1p2h) = (27) %2 explp, X +i26), (3.12)

wherex is an eigenvalue of the spin projection (chirality) oper&ofhe form of
the eigenfunctions of the second set depends on the type of irrep There are four
types of unitary irreps labeled by the eigenvatofeof the operatof? [80].

1. m* > 0. Representations correspond to particles of nonzero mass; the
eigenfunctions of the operatofg, J, Sare

(rod | mjr) = (4r) 7t explrl /2)HP(£mr) expllp) exp(r6), (3.13)

whereH?(mr) is the Hankel function,2 = (x%)2 — (x%)2, and corre-
sponds to the sign of energyg.

2. m? < 0. Representations correspond to tachyons, whidh=inl + 1, are
more similar to usual particles because of the symmetry between space
and time variables. The form &fp6 | mji) coincides with (3.13), bun
is imaginary.

3. m= 0, p; = £ po. Representations correspond to massless particles. Ac-
cording to (2.39), for the action of finite transformatiofig{g) on the
functions f (p, £p, 6/2), one obtains

To(9) f(p, £p. 0/2) = €27 f(p/, £p’,0/2— ¢/2), p =€*p.

Therefore, the representatidp(g) is reducible and splits into four irreps
differing in the signs oy andp; = =+ po, and an reducible representation
that corresponds tom = py = 0
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4. m= po = 0. This representation decomposes into a sum of one-dimen-
sional irreps of the grouB1, 1), which are labeled by eigenvalues®f

There are no integer value restrictions for the spectrurﬁ, a@ind chirality
can be fractional-oo < A < 4+00. The decomposition of the functiongx, 0)
in terms of the eigenfunctions & corresponds to the Fourier integral expansion
of functions on a line. The equivalence of the representations characterized by
different. is related to the fact that, as in the Euclidean case, the op&3aines
not commute with right translations.

One can convert vector indices into spinor indices and vice versa with the
help of the formula (2.10). In the case under consideration, matsiGes real and
symmetric, X’ = UXU, or in componentwise formx"” o4 = Ufouﬂﬁ/x/‘uf//,
and there exists one type of spinor index only. Denoting elements of the first
column of the matrixZ transforming under the spinor representatiois6(1, 1)
byz,, zz = coshf/2), z, = sinh@/2), we obtain for the components of the vector
and antisymmetric tensor

q" =o"Pz,z5, q°=costy, q'=sinhg, g% =0""Pz,z;=i. (3.14)

There exist two invariant tensorg” and&””, which can be used for raising of
indices. This is related to the fact that the vectod x*) and &* x°) have the
same transformation rule, and one can construct an invariant from two vectors in
two different ways»n*¥q,q;, = cosh@ — 0’), ¢*’q,.q, = sinh@ — 9’).

3.3. Relativistic Wave Equations in 1+ 1 Dimensions

An irrep of the groupM(1, 1) can be extracted from GRR by fixing the sign
of pp and eigenvalues of the operat@s S,

p?f(x, 0) = m?f(x, 0), (3.15)
Sf(x,0) = Af(x, 0), (3.16)

where the chiralityr distinguishes equivalent irreps labeled by identical eigen-
valuesm? of the Casimir operatop?. Solutions of this system have the form
f(x, 0) = v (x)&*, wherep?y (x) = m2y(x).

According to (2.61), space reflection conveet¥’ to e '*?. Irreps of the
improper Poincar group are labeled by mass sign po, intrinsic parityn = +1,
and spins = || (as aboves distinguishes equivalent irreps). In the rest frame, it
is easy to write down functions with the mentioned characteristics:

eHme (@ + e, (3.17)

States with arbitrary momentum can be obtained from (3.17) by hyperbolic rota-
tions and form the basis of the unitary irrep of the improper group. On the other
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hand, the problem arises of constructing equations that, unlike the system (3.15)—
(3.16), are invariant under the improper Poircgroup and have solutions with
definite parity. These equations should combine states with chiralities

The general form of the equations linearfit is

P, I*f(x, 0) = xf(x,0), (3.18)
wherel* = ['%(6, 3/06). For invariance of (3.18) under space reflectrand

hyperbolic rotations, the operat%F“ must commute wittP andJ = L + §,
whence

P B (capupe, [P0 § =il [IY§ =il (3.19)
The operators

A . ad ~ . 0 “n A R
I'° = scoshy — smhe£, 't = ssinhd — cosheﬁ, [[9 1Y =—iS
(3.20)

obey these relations. One can construct the operators, which raise and lower chi-
rality A by 1,

[, =T"—Tt=efs+09/00), T_=I°-—Tt=¢€(s—3/00). (3.21)
Operatord™®, ', andl'2 = —iS = —3/060 obey the commutation relations of the
generators of th8Q2, 1) ~ SU(1, 1) group:

[ 1P = €T, Ta=nal™® 7no0=n2=—n1=1
[al® = s(s+ 1).
Thus, if symmetry with respect to space reflection holds, the condition of

mass irreducibility (3.15) can be supplemented by Eqg. (3.18) instead of (3.16).
This means passing to a new set of commuting operators, namelyffroto

B, f)ul:“. Let us consider the system
p*f(x,0) = m*f(x,0), (3.22)
p,.["f(x,0) = msf(x,0). (3.23)

The operatos does not commute Witbﬂf‘“, and the particle with nonzero mass
described by Eq. (3.23) cannot be characterized by certain chirality. In the rest
frame, po = +m, and the functions (x, ) = eiimx0¢(9) should be eigenfunc-
tions of operatoi ™ with eigenvaluests. The equation

% (6) = [scoshy — (sinh6)d/30]¢(0) = 3¢ (6)

for % = +s has solutions [cosh(2)]> and [sinhg/2)]%, respectively. We will
consider two cases.
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Case 1.The solutions of the system (3.22)—(3.23) are sought in the space of
polynomials oke~?/? ande’/? that correspond to finite-dimensional nonunitary rep-
resentations o8U(1, 1). Corresponding representations of 8&1, 1) subgroup
are also nonunitary. For these representations, the gen&aa@mnti-Hermitian,
and it is convenient to redefine the chirality operator &sln the rest frame, a
general solution of the system (3.22)—(3.23) is

f(x, ) = C.6™[coshf/2)]% + Coe ™ [sinh(@/2)]%, (3.24)

where & is a positive integer. Therefore, for a unique sgjthere are only two
independent components (with positive and negative frequency). The space inver-
sion taked® to —6, and in the rest frame, solutions with different signpgafand
half-integers are characterized by opposite parityFor integers, all solutions

are characterized by = 1. Plane wave solutions, which correspond to a moving
particle, can be obtained from (3.24) by a hyperbolic rotation by the argle 2

fms(x, ) = C1*" X (cosh[f + ¢)/2])*
+ Coe N sinh[@ + ¢)/20),

wherekg = mcosh 2, k; = msinh 2.

In the ultrarelativistic limit¢ — +oo, we have two states with chirality
A = &S, respectively. Thus, if in the rest frame, one may distinguish two com-
ponents with positive and negative frequency, then in the massless limit, one may
distinguish two components with positive and negative chirality.

The matrix form of the system (3.22)—(3.23) can be obtained by the decom-
position of f (x, 6) over the basig*’/?, , = —s, —s+1,...,s. Thereare 8+ 1
components/(x) in this form, but only two of them are independent. Notice that
representations @Q(1, 1) of the forme* are nonunitary for real and the inte-
gral overd is divergent. One can redefine the norm of a state with the help of the
scalar product in the space of multicomponent functigs), but this product is
not positive definite.

Fors = 1/2, substituting the functiofi(x, 8) = v1(x)€’/? + yr2(x)e"?/?into
Eq. (3.23), we obtain the two-dimensional Dirac equation (Abdztlkl., 1991)

f)ﬂ)/ﬂ\p(X) = m\IJ(X), yo = 01, yl = —io’z, Zéz y3 = 03. (325)

wherew (x) = (¥1(x) ¥2(x))T. The matrixy 2 = y%y! corresponds to the chirality
operator and satisfies the conditior’] y#]. = 0. On the other hand, this matrix
corresponds to hyperbolic rotation, and similar to the B case, one can write
Yy =" —io*’, whereo %t = iy3. The invariant scalar product has the form

[Y1(X)12 — [¥2(X)I2.
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For s=1, substituting the function f(x,0) = y11(X)€’ + ¥12(X) +
Yoo(x)e~? into Eqg. (3.23), we obtain

(P, — mw(x) =0,

L (010 L (0 -1 0
r=—jJ|1o0 1), rit=—1{1 0o -1,
v2\o 1 0 v2\o 1 o0

/10 0
§—|lo o o], (3.26)
00 -1

wherew (x) = (¥11(X) ¥12(X)/v/2¢22(X)) T . Using (3.14) to convert spinor indices
to vector ones, we obtaity = Voo — Y11, F1 = Y2 + Y11, andFo; = —Fi0 =
—i Y12, and we obtairpo]-"l — p1Fo= —imFoy, ipoF]_o = mFy, ipj_F]_O = mkFg.
Thus, one can rewrite the 1 “Duffin—-Kemmer” equation (3.26) in the following
form, which is similar to Proca equations int31 dimensions [see (5.85), (5.89)]:

I Fy —o0F, =mE,, 98"F,, =mF,. (3.27)

As a consequence of (3.27), we obtaipF* = 0, (p? — m?)F* = 0. But the
1+ 1-dimensional case is distinctly different from thet3l-dimensional case
because the componerg; = —Fyis characterized by zero chirality and thus the
roles of F,, andF, are interchanged.

In the massless case, the system (3.27) splits into two independent equations
for the component$,, andF,,, respectively,

a/t}—v - av-ﬁt = Oa (328)
"F,, = 0. (3.29)
The first equation has propagating solutions
Fo = CeP™ ) 1 CdPe )y = €y dP ) _ CpePX)

obeying the transversality conditigny 7* = 0. The second equation [free two-
dimensional Maxwell equation (Abdalkt al., 1991) corresponds to the compo-
nents with zero chirality and has the trivial solutié), = const only. Notice
that for real fieldf *(x, ) = f(x, ) componentsf, andF,, also are real, and
propagating solutions do not exist fior= 0.

If, for s=1/2 ands = 1, the first equation of the system (3.22)—(3.23) is
the consequence of the second equation, thers forl, there are solutions of
Eq. (3.23) with mass spectrum;j|s|=mss =s,s— 1, ..., —s. For the ex-
traction of the improper Poincaigroup characterized by certain masand spin
s representations, it is necessary to use both equations of the system.
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Notice that the chiralityn of a particle described by (3.15)—(3.16) can be
fractional, but the spirs of a particle described by (3.22)—(3.23) can be only
integer or half-integer fom = 0 and a finite number of componenigx).

If 2sis not an integer, then acting by the raising operator on the state with lable
A = —s, we will not get to the state labeled hy= s and connected with the initial
state by the space reflection; moreover, the spectrunisaiot bounded above. On
the other hand, it is possible to develop an alternative approach (in particular, for
massive particles with fractional spin) based on using infinite-dimensional unitary
irreps ofSQ2, 1).

Case 2.Let us consider now the solutions of (3.22)—(3.23) in the space of
square-integrable functions 6f In the rest frame, as we have seen above, there
are two types of solutions. The solutions [siff#%)]* are not square-integrable
for anys since the corresponding integral is divergent either at zero or at infinity.
The solutions [cosHi(/2)]* for s < 0 are square-integrable:

/ +Oo[cosh(9 /2)]*do = 2B(1/2, 2s).

Therefore, in the space of square-integrable functions, Eq. (3.23) has only positive-
energy solutions. Solutions wifly < 0 correspond to the equatifn rf(x,0) =
—msf(x, 0). Normalized positive-energy solutions of the system (3.22)—(3.23) for
a particle with spirjs| and momentg, = mcoshy, andp; = msinh¢ are

f(x,0) = (27) 1 [2B(1/2, 25)] Y2 dPx"+iPX (cosh[p + ¢)/2]) 29, (3.30)

In contrast to the case > 2, solutions with distincs are nonorthogonal. The
decomposition of the solutions (3.30) over the functieh8 [i.e., overSQ(1, 1)
unitary irreps] corresponds to the Fourier integral expansion. We will consider
properties of the positive-energy equations in more detail in thedZdimensional
case below.

4. THREE-DIMENSIONAL CASE
4.1. Field on the GroupM(3)

The case of tht/ (3) group is characterized by many-dimensional spin space.
On the other hand, the constructions allow a simple physical interpretation.
Using the operator:i;I =L +8 = (1/2)e”ijk, it is possible to rewrite the
commutation relations (2.37) in the more compact form
(b B =0, [p.31=ic¥p, [§.I1=i®d (@)
The invariant measure on the group is given by the formulas

d3x sind do d¢ dv,

1
_ 3 2 2 2 2, _
du(x,z) = Cd°x 8(|za|” + | 22| — 1)d“z; d“z, = 1672

—c0o<X<+400, O0<b<m, O<o¢p<?2rn, -2nm<y <21, (4.2
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where

7= Cosgei(llf—dJ)/Z Z =i Sinﬁei (W+¢)/2
2 ’ 2

are the elements of the first column of matrix (2.48)= —z, 7 = z,, and
0, ¢, v are the Euler angles. The spin projection operators acting in the space
of the functions on the group(x, z) have the form

S = (Zcrkaz 08, z=(27), 8,=(/0249/32)",

~R * - * -
X = _E(Xf;kax_ xokdy), x =(2'—=2), 8, =(/92"—9/9 ). (4.3)

In terms of Euler angles, we obtain

&=—id/o¢, & =idjoy. (4.4)

The operatofJ and the operator of the spin projection on the direction of
propagationV = pJ = pSare Casimir operators. The eigenval®S + 1) of the
Casimir operator of the rotation subgroumﬁzpaces2 SR define spirs. Com—
plete sets of the commuting operatd,, W, 2, SR} P2 W, 32, S, S, 83}
consist of six operators (two Casimir operators, two left generators, and two right
generators). The Casimir operamt does not commute with, and S sepa-
rately, but only with the generatoﬂ& = Lk + Sk therefore there are sets that do
not includeW, for example{p?, ps. L3, S5, 2, Ss} and{p,, S, 2, 83}

We will consider the first set, in this case eigenfunctions have the simplest
form. This set mcludes two Casimir operators, the operator of spin sqSéanﬂ
the generatoE:,, The latter two generators commute with all left generators, but
do not commute with right generators and label equivalent representations in the
decomposition of the left GRR.

According to (4.4), the eigenfunctions ég éif |--n)y=n|---n), have
the form| ---n) = F(X, 0, ¢) exp(—iny) and differ only by a phase factor. As
a consequence of the commutation relations of the generﬁ;orﬂne operators

éi = S? +i és are the raising and lowering operators for the eigenfunctions of
aR

S,

&l om=csn)|---ntl). (4.5)

The intertwining operatoréz consist of the generators of right rotations, which
conserve the interval square according to (2.35). Moreover, the right rotations do
not act onx. But there are no transformations (rotations and translations) of the
reference frame, which connect representations with differeMotice that the
states labeled by and—n are interchanged under charge conjugation (2.63).
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The operato8? also labels equivalent representations ofh@) group. This
operator commutes with all generators except right translations, and therefore an
intertwining operator is a function of the latter generators. Right translations change
both the interval and the spin. Therefore, it is natural to characterize a free particle
in three-dimensional Euclidean space not only by momentum and spin projection
on the direction of propagation, but also by s@in

There are two standard realizations of the representation spaces, correspond-
. . ~R
ing to eigenvaluea = £2Sandn = 0 of the operatof;.

The first realization is the space of analytic-€ —2S) functions f (x, z) or
antianalytic o = 29) functions f (x, z) of two complex variableg!, z2, |z}|2 +
|Z?|? = 1, that is, the space of functions of two-component spinors. In particular,
according to (4.3), for the space of analytic functions, we have

A 1
S( = EzakaZﬂ (4.6)

é? = —(z%0/07* + 720/37%) andS? = 83(83 — 1). The eigenfunctions of the op-
erator of spin squared are polynomials of the powsriR z1, z2. The charge
conjugation transformation connects equivalent irreps labeled Hy+2S and
the spaces of analytic and antianalytic functions. This transformation reverses the
direction of momentum and spin.

The second realization is the space of functions, which do not depend on the
angleyr, and corresponds to= 0. It is the space of functions of five real variables
on the manifold

R3 x &, du = (47) td3x sin6 do de.

The point in the spin space [i.e., on the sph&te- CP! ~ SU(2)/U(1)] can be
defined by the spherical coordinatesp or by two complex variables

6 . .0 .
7= cosze"q’/z, 72 = sin=¢€'¢/?

[inthis case, one may use (4.6) for the spin projection operators], or by one complex
numberz = z;/7, (this case corresponds to the realization in terms of the projective
spaceCPY). In terms of variable$, ¢, the eigenfunctions of the operatdsS;
are PS(cos0)e'’s?, where PS(cost) are associated Legendre functions (Vilenkin,
1968).

Let us consider eigenfunctions of the set of the opera{tﬁ&s\fv, S} inthe
space of analytic function af*, z%:

p,f(x,2) = p.f(x, 2, ézf(x, Z2) = S(S+ 1) f(x, 2),
pSf (x, 2) = psf(x, 2). 4.7)

The eigenfunctions o’ are polynomials of the powerin z [the unitary irreps
of SU(2) are finite dimensional, therefore the s@rand the spin projection on
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the direction of propagatiomare integer or half-integer]. Let, = (0, 0, p); then
the normalized solutions of the system (4.7) are

1/2 _
|0 ODSS — (271,)73/2 <$) (Zl)S#S(ZZ)steIXMJ.

The states with arbitrary direction of vectprcan be obtained by the rotation
P=UPRUT, Z =UZy, Py = pos, Zo = (z122)":

1/2
— —-3/2 &)
x (2201 4+ 22 0p) %5 (=2tuy + 22u0) %™, (4.8)

whereug, u, are the elements of the first line of the mattix Notice that it is
sufficient to use only two angles for the parametrization of matrisince the
initial state has a stationary subgrouil).

For the rest particlep? = f)é: 0, and only in this case ar®(3) irreps
labeled by different nonequivalent.

In the general case, functions corresponding fmarticle of spinS have the
form

2S
fs(x.2) = Y ¢"@vn(x). ¢"(2) = (Cl) """  (4.9)
n=0

/ o (%, 2150, 2) du(x, 2) = dss / S U000 &, (4.10)
n=0

whereC2S is the binomial coefficient andu(x, z) is the invariant measure (4.2).
The relation (4.9) gives the connection between the description by the functions
f(x, z) and the standard description by the multicomponent funcfigfx). It

is easy to see that the action of the operaékr& %zm(az on the function (4.9)
reduces to the multiplication of the colungir(x) by (2S+ 1) x (2S+ 1) matrices

S of SU(2) generators in the representatig S, f (x, z) = ¢(2) ¥ (). The
matricesS, obey the commutation relations of spin projection operators, namely
[S,SI]=ielks.

In particular, the linear function af*, z2 corresponds to spii = 1/2, and the
action of the operator§, on/(x) is reduced to the multiplication hy-matrices,
Scf(x,2) = p@owy (X). )

As mentioned above, the operatfris not a Casimir operator d¥l(3) and
labels equivalent representations of the group. This operator is the direct analog
of the Lorentz spin operator in the pseudo-Euclidean case, and we will consider
its properties in detail.

1. The operatoré2 is composed of right generators commuting with all
left generators and therefore is not changed under the coordinate
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transformation (left transformations of the Euclidean group). The right
transformations do not change the spin projecsam the direction of
propagation, but change both sg@8rand interval (distance).

2. The operato[%2 does not depend oxand commutes with the operators
Xk> Py S(; therefore, it is an integral of motion for any Hamiltonians of
the formH = H(xc, Py S)-

3. The eigenvalues d¥ label irreps of the rotation subgroup in the spin
space and define the possible values of the spin projestion

Notice that in the representation theory of the Galilei group [symmetry group
of nonrelativistic mechanics, which includé$(3) and ensures more general de-
scription], irreps labeled by different eigenvaluesS3fare not equivalent. The
classification of irreps of the Galilei group can be based on the use of two invari-
ant equations. The Sabdinger equation fixes the mass and the second equa-
tion fixes the eigenvalue of spin operaé?r(Hamermesh, 1960; Levy-Leblond,
1963).

4.2. Field on the GroupM(2, 1) and Fractional Spin

Using the operator” = L” + §" = (1/2)¢”#J,,,, itis possible to rewrite
the commutation relations (2.37) in the form

[P PI=0, [P 3] =—ie"p,, [3".37]=—ie"], (4.11)

The invariant measure on the group is given by the formulas (Vilenkin, 1968)

1
du(x, z) = C d®x 8(|1z1)? — |22)? — 1)d?z, d?z, = Wo|3x sinhé do d¢ dyr,
T
—c0o<X<+400, 0<bh<oo, O0<o¢p<2nm,

—21 <Y < 27w, (4.12)

wherez; = cosh$e V=92, z, = sinhe (/9)/2 are the elements of the first col-
umn of matrixZ, (2.46), and, ¢, andy are the analogs of the Euler angles;
7? = —z;, 7t = z,. The spin projection operators acting in the space of the func-
tions on the groug (x, z) have the form

AL 1 * %
S' = 5(z;/"az— zy*3,), 2= ("2, 0, =(0/02'9/0)"

2
I

1 * *5
=50 d, = xy"8y). x = (2 ),

9, = (8/02%9/07)", (4.13)
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wherey# are three-dimensiong-matrices,
yH = (03, i00, —io1), yry' =nt" —ie"’y,. (4.14)

Note that a nonequivalent set pfmatrices,yy" = n’ +ie""y,, is used in
some papers. In terms of the Euler angles, we olfidia —i 9/0¢, S% =i0/0y.
The sets of commuting operators are the same as in the Euclidean case.

In consequence of the identityUo; = U, one can show that the matidx
is the invariant symmetric tensor converting dotted and undotted indices,

Zy= (01)% 2. (4.15)
According to (2.47), the invariant tensay,, connects a vector index and two
spinor indices of different types. On the other hand, using the identity mentioned
above, one can rewrite (2.47) in the fonti(o,01) = x*U(0,01)UT. Thus the
invariant tensor, which we denote as

Ov'lwlg = (O’MO';[)W;, 5‘,404}3 = 5‘Mﬂa, (416)
connects a vector index and two spinor indices of one type. Thus, one can write
~ A~ *

the generator§” inthe formS" = 152 (z%9# + z#6"). An analog of**-matrics
in 2+ 1 dimensions is¢""),s = €""*&,44. Raising one of the spinor indices of
0., We obtain two sets of three-dimensionaimatrices differing only by the
signs ofy% andy?.

Similar to the Euclidean case, there are two standard realizations of the repre-
sgntation spaces, corresponding to eigenvailuest2Sandn = 0 of the operator
S;.

The first realization is the space of analytic-£ —25) functions f (x, z) or
antianalytic o = 2S) functions f (x, ) of two complex variableg!, 22, |22 —
|Z'|2 = 1, that is, the space of functions of two-component spinors. The eigen-
functions oféué" are homogeneous functions of degrei z. According to
(4.3), we haveS} = —(z19/02% + 220/072) for the space of analytic functions
and ) = 7%9/92% + 729/97* for the space of antianalytic functions. The eigen-
functions oféué’* in these spaces are also eigenfunctioné?pﬁvith eigenvalues
n = F2S, respectively.

The second realization is the space of eigenfunctiorégcyf/ith zero eigen-
value. It is the space of functions of five real parameters on the manifold

R® x CDY, du = (27)"2d3 sinho do do,

whereCD* ~ SU1, 1)/U (1) is a complex disk. These functions do not depend
on the angle) .

We recall some facts from the representation theor8d{L, 1). For finite-
dimensional nonunitary irrep& of the 2+ 1 Lorentz grougsU(1, 1) ~ SQ2, 1),
the spin projectiors (the eigenvalue oéo) can be only integer or half-integer,
s=-S5, ..., S whereS > 0. However, in 2+ 1 dimensions, the Lorentz group
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does not have a compact non-Abelian subgroup. Therefore, there are infinite-
dimensional unitary representations corresponding to fractiSnahese repre-
sentations are multivalued representation$SbK1, 1). For single-valued repre-
sentations ofSU(1, 1), the spin projectiors can be only integer or half-integer

[for SQ2, 1) only integer].

The representations of discrete series correspo®ito-1/2. Irreps of the
positive discrete seri€ks are bounded by the lowest weight= —S, irreps of the
negative discrete seridg are bounded by the highest weight S, and irreps of
the principal series correspond$o= —1/2 + i A and can be bounded by highest
(lowest) weight only forS= —1/2. For other irreps of the principal series, the
spectrum ok is not bounded. Supplementary series correspordlif2 < S< 0
and are characterized by a nonlocal scalar product.

The weight diagrams of series on the pl&)e are given visually in Gitman
and Shelepin (1997) and Wybourne (1974).

Thus, there are only two possibilities for the description of a particle with
fractional spin by means of unitary irreps fJ(1, 1) with local scalar product.

The first corresponds to the discrete or principal series irreps bounded by lowest
(highest) weight|s| > |S| > 1/2. The second corresponds to the principal series
irreps which are not bounded.

Unitary irreps of discrete series are used for the description of anyong€Cort”
and Plyushchay, 1994; Gitman and Shelepin, 1997; Jackiw and Nair, 1991;
Plyushchay, 1992). Corresponding unitary infinite-component representations of
M(2, 1) were constructed (Cas and Plyushchay, 1994; Jackiw and Nair, 1991;
Plyushchay, 1992) in the space of functionsxdf and the complex variable
z = 7z'/7?, thatis, on the coset spab#(2/1)/U (1). It was shown that RWE asso-
ciated with irreps of the discrete series have solutions only with a definite sign of
the energy. Thus, the mentioned RWE are analogs of Majorana equationslin 3
dimensions; this aspect is considered in more detail ineSoatid Plyushchay
(1994). Various formulations of the higher spin theory based on finite-component
representations were considered, in particular, in Deser and Kay (1983), Deser
(1984), Aragone and Deser (1984), Gitman and Tyutin (1997), and Vasiliev and
Tyutin (1997).

4.3. Relativistic Wave Equations in 2+ 1 Dimensions

Let us fix the eigenvalues of the Casimir operators of the Poéngraip and
of the spin Lorentz subgroup:

p?f(x,2) = m?f(x, 2), (4.17)
p,.S f(x,2) = Ki(x, 2), (4.18)
S.8 f(x.2) = (S+ 1)f(x, 2). (4.19)

Below we will call the operatofs,i§‘ the operator of the Lorentz spin square.
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Equations (4.17) and (4.18) define a subrepresentation of the left GRR of
M(2, 1), which is characterized by mass Lorentz spinS, and the eigenvalue
K of the Lubanski—Pauli operator. For= 0, we suppos& = 0, which is true
for irreps with a finite number of spinning degrees of freedom. The general cases
for m = 0 and form imaginary were discussed in Binegar (1982) and Gitman and
Shelepin (1997).

Possible values ok can be easily described in the massive case. Here we
can use arest frame whepe S = S’msignpo. Thus,K = sm= s®mfor pp > 0
andK = sm= —smfor py < 0, wheres? is the eigenvalue of°. The spectrum
of & depends on the representation of the Lorentz group.

The variables labels irreps of the groumM (2, 1) and can take both positive
and negative values. Thus, there exits an analogy with massless particleslin 3
dimensions characterized by helicity. In both cag€q?) is the little group, and
single-valued irreps 0c8Q(2) are labeled by integer numbes. 2It is a particular
case of the connection between the massive fieldsdimensions and massless
fields in d + 1 dimensions (Aragonet al., 1987; Vasiliev and Tyutin, 1997).
Therefore, we will calk the helicity ands| the spin.

Corresponding to (2.61), space reflection reduces to rotatiandrpund the
axisx® and convert& to (Z") ! = 63Zo3, orz; — 71, Z0 — —2,. The operators
p°, & do not change. Thus, distinct from the {31)-dimensional case, space
reflection leaves helicity unaltered.

Fixing Sin (4.19), we pass to the space of homogeneous functions of degree
2Sin z;, z,. According to the sign dB, below we will consider two possible choices
of SU(1, 1) irreps bounded either on both sides or on one side, respectively.

Finite-dimensional nonunitary irrep& of SU(1, 1) are labeled by positive
integer or half-integeB. The basis in the representation space is formed by poly-
nomials of power 3in z; see (A2). We denote corresponding representations of
M(2, 1) asTO,.

Infinite-dimensional unitary irrepss (T4) of SU(1, 1) are labeled by nega-
tive S < —1/2 and are bounded by the highest (lowest) weight. The basis in the
representation space is formed by quasipolynomials of poBén 2; see (A3).

We denote corresponding representations@®, 1) asT (T ).

One can represent the functidiix, z) in the form

f(x.2) = ¢y (x). (4.20)

where¢(2) is a line composed of the basis elemeptéz) of the corresponding
SU(1, 1) representation, ang(x) is a column composed of the coefficients in
the decomposition over this basis. The action of the differential operétors a
function f (x, z) may be presented in terms of matrices

S"1(x,2) = "(@(S ) ¥ (¥), (4.21)
whereS* are SU(1, 1) generators in the representatibg[see Appendix A and
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also Gitman and Shelepin (1997). They obey the commutation relations of the
SU(1, 1) group §*, S"] = —ie*"S,.
For fixedSin the matrix representation, Eqgs. (4.17) and (4.18) have the form

(p* = m*)y(x) =0, (4.22)
(P, S —smy(x) =0, (4.23)
According to (4.23),
yHx)(S™ p, +sm) = 0.

Itfollows from the explicit expressions (A4) thatfﬁ,ﬂ,sthe relatiorS* = M'S*T,
where the relationsI{)ny = (—1)"8,y andI'? = 1 hold. ForT;{S andT_, the
matricesS* are Hermitian,St* = S*, according to (A5). Let us introduce the

notation

v =y¢r forT?2

,S?

v =yl forT ., T-

m,s> "m,s*

The functiom/?(x) obeys the equation

¥(x)(SP,, +sm = 0. (4.24)
As a consequence of the relatioB8 = I'S*T" and @) = —(—1)%*S*,
we obtain that for irref,) ¢ finite, the transformation matrices obey the equation

I'TT(g)l = TY(g). Thereforey (x)y(x) is a scalar density, and one can define
a scalar product in the space of columns

W', ¥(x) = / ¥ (0¥ (x) dx. (4.25)

The scalar density is positive definite fgf, s and T, ,
T
As a consequence of (4.23) and (4.24), the continuity equation holds,
9" =0, j*=ySy. (4.26)
Together with the current vectgr*, by analogy with the four-dimensional
case (Gel'fancaet al,, 1963), one can associate with the linear equation (4.23) the
energy-momentum tensdr*’ and the energy densiw = —T %
oy oy
TW=Im(S—.,v), W=-T%=_Im(S—=, vy ). 4.27
(s5%.v) ($5v).  @an

If the matrix S° is diagonall, then the positiveness \8f(x) is equivalent to the
requirement that

in contrast to the case of

Sy, SLy) = 0 (4.28)
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for all vectorsy (Gel'fandetal, 1963). In particular, fol ' < andT,, ¢ the relation

(v, SPy) = TSy > 0 holds, and the energy density is positive definite.
There are two cases when Eq. (4.22) is the consequence of (4.23). Indeed,

multiplying Eq. (4.18) byp, S* + ms one gets

(B, +m3(p, S~ mgy() = ( 5B, PIS", ST, — ) w0 =0
(4.29)

In the particular cas& = 1/2, we haves = +£1/2, S* = y*#/2, and (4.29) is
merely the Klein—Gordon equation (4.22). In the general case, the ma8ices
are noty-matrices in higher dimensions, and the squared equation (4.29) does not
coincide with the Klein—Gordon equation (4.22). Using the rest frame, one can
show that Eq. (4.22) follows from (4.23) also in the case of the vector representa-
tionS =1, s = 1. Inthe other cases, for the identification of the irrep/qP, 1),
it is necessary to use both equations of the system (4.22), (4.23). Notice that an-
other approach to the description of fields with fixed spin and mass was suggested
in Plyushchay (1997), and this approach is based on the system of spinor linear
equations.

Itis naturaly to connect the spin value with the highest (lowest) weight of the
irrep of the Lorentz groups = £S. This means that up to a sign (plus fay > 0,
minus forpy < 0), sis equal to the maximal or minimal eigenvalue of the operator
& in the representatiofis of the Lorentz group. According to (4.17)—(4.19), in
this case, the functiong(x, z) obey

p2f(x,2) = m?f(x, 2), (4.30)
p,S f(x,2) =msf(x,2), s==£S, (4.31)
S.8 f(x,2) = (S+ 1)f(x, 2). (4.32)

In the framework of the system (4.30)—(4.3f)ere are two possibilities to
describe one and the same spin

1. Equations forf (X, z) = ¢(2)y(X), wherep(z) transforms under the finite-
dimensional nonunitary irrep of the Lorentz group.

2. Equationsfoff (x, z2) = ¢(2)¥(X), wherep(z) transform under the infinite-
dimensional unitary irrep of the Lorentz group. These equations allow us
to describe also particles with fractional spin (anyons).

Case 1 First, consider the Poincaigroup representatioﬁﬁﬁ,s associated
with finite-dimensional nonunitary irrepsf SU(1, 1). In this case,S has to
be positive, integer or half-integer. In the rest frame, the solutions of the sys-
tem (4.30)—(4.32) in the space of analytic functions (polynomials of povger 2
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in z}, z%) are
s=S>0: f(x 2)=Cy )%™ + Cy(zA)Se ™, (4.33)
s=-S<0: f(x,2) = Cs(z!)%e ™ 4 Cu(22)%™". (4.34)

For unigue mass and spin, there exist four independent components differing in

the signs ofpg ands, which correspond to four irreps & (2, 1). The separation

by the sign of the helicitg is absolute since these states are solutions of different

equations. But states with different sign jof are solutions of one and the same

equation. Hence, the energy spectrum of solutions is not bounded below or above.
In the space of antianalytic functions (polynomials of poWShﬁi, 5'2), the

solutions of the system (4.30)—(4.32) are

s=S>0: f(x,2)=Cy2)% "™ + Cy(22)%e™,
S=-S<0: f(x,2) = Ca(z})Sd™’ 4 Cy(z2)Se ™"

These solutions are connected with the previous case (4.33), (4.34) by a charge
conjugation (2.63) and therefore may be treated as the solutions describing an-
tiparticles.

The wave function (4.33) corresponding to the helisity —Shas the form
C(z2)%5eP’ py = m, in the rest frame. Acting on it by finite transformations,
we get a solution in the form of the plane wave, which is characterized by the
momentump:

P=UPU, Po=ml, Z=UZ, Zo=(@z2)",
f(x, 2) = (27)"¥*(ZPuy — Z*u,)?SeP*, (4.35)
The state wittPy = mlhas the stationary subgroUi{1), and we can take elements
u; = coshf/2) andu, = sinh/2)e® of the first line of the matriXxJ, which

depends on two parameters only. Thpg,= E = mcoshy and —p; +ip, =
msinhd €, and one can express the parametarandu, via the momentum

p:

<U1>_ 1 ( E+m) (4.36)
uz) = 2ZmE+m) \—P1+ipy) '

The 25+ 1 components/,(x) are the coefficients in the decomposition of the
function (4.35) over the basig'(2), f(X, 2) = ¢"(DyYn(x),n=0,1,...,2S

¥n(X) = (21) ¥2(Chs) " (Ur)?S " (—up)" P

12 (E +m)*"(p1 — ipz)neipx.

= (21)"*2(Cle) (2m(E + m))S

(4.37)
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In the particular cas& = 1/2, we get

_ 1 (P2—ip1) gpx
V)= =y (e )

Considering the system (4.31)—(4.32) without the condition of mass irre-
ducibility (4.30), it is easy to see that the charge dengity- " S°y is positive
definite only forS = 1/2, and the energy density T is positive definite only
for S= 1. The scalar densityy = Ty is not positive definite.

Let us show that for particles with half-integer spin described by the system
(4.30)—(4.32), the charge densijtyof (4.26) is positive definite. In the rest frame,
solutions of the system (4.30)—(4.32) have only two components (labeledby
+S), which we denote ags(x) andy_s(x). For half-integer spin, the inequality
j9=ytrSLy = Y|y + | — s|?) > 0 holds. ForS > 3/2, from the explicit
form of the matricesS' and S? of (A4), one can obtain that in the rest frame,
i = j%2 =0, and therefore the square of the current vect8)?(— (j1)? — (j?)?
is positive. Thereforej® > 0 for any plane wave.

Thus, the charge densify is positive definite for half-integer-spin particles
described by representatioﬂiﬁS of M(2, 1). The scalar density and the energy
density are proportional o'y = |ys|? — |¥_s|?in the rest frame and therefore
are indefinite.

Let us consider now particles with integer spin. In the rest frame, the solutions
of the system also have only two componenig(x) andvyr_s(x), (S°v, S°y) =
YT Sy = S(Jys|? + [¥_s|?) > 0. Thus, the energy density is positive def-
inite for integer-spin particles described by representatiﬁﬂLsof M(2,1). The
charge density is proportional t¢rs|?> — |v_s|? in the rest frame and therefore is
indefinite.

Consider two particular cases explicitly. F6r= 1/2, the decomposition
(4.20) has the form

f(x.2) = Z'a(X) + Z2y2(x), ¢¥'(X) =U"9(x), ¥(X) = (¥ va(x))".
(4.38)

Taking into account the relatid —* = o3U T3, which is valued for th&U(1, 1)
matrices, we get the transformation law for the line= v o3, V' (X)) = v (x)U.
The producty (X)¥(x) = [¥1(X)|? — |¥2(x)|? is the scalar density.

Thus, in the case under consideration, we have two equivalent descriptions,
one in terms of functions (4.38) and the other in terms of lii€s) or columns
¥ (x). One can find the action of the operat&sin the latter representation, and
Eq. (4.23) can be rewritten in the form of ther2l Dirac equation

S'y(x) = %V”l/f(x), (Puy" FMy(x) =0, (4.39)

where minus corresponds $o= 1/2, plus corresponds ®= —1/2, andy* are
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2 x 2 y-matrices (4.14) in 2- 1 dimensions. The functiong = (¥ 0)" and

¥ = (0v?)T are eigenvectors of the opera®rwith the eigenvalues-1/2.
Sometimes two equations fer= +1/2 are written as one equation for the

four-component reducible representation (Gitman and Tyutin, 1997; Vshivtsev

et al, 1998), @,I'* — m)¥(x) = 0, wherel'* = diag(/*, —y*) which corre-

sponds to the simultaneous consideration of particles with opposite helicities.
For S = 1, the decomposition (4.20) has the form

f(x, 2) = ¥010)(2) + ¥12()2'Z + ¥22(X)(Z)?, (4.40)
where ¥/ (x) = (¥12(X) Y12(X)/v2 ¥20(x))T is subjected to Eq. (4.23) with the

matrices
10 O 1 (0 -1 0O
=100 o), St=—-—1|1 0 -1],
00 -1 v2\o 1 o0
. (010
=——1[1 0 1}. (4.41)
v2\p 1 o

If, instead of the cyclic componentsg(x), one introduces new (Cartesian) compo-
nents¥, = &% y,4(X), whereo),q4 is definedin (4.16F = —2y*2 F; = ¢ +
Y22 Fp = i(y? — y1Y), then Eq. (4.23) takes the form (Gitman and Shelepin,
1997)

3,6 F, — smF" = 0. (4.42)

A transversality condition follows from (4.42),, 7" = 0. One can see now that

Eq. (4.42) are in fact field equations of the so-called “self-dual” free massive field
theory (Townsendet al, 1984). As remarked in Deser and Jackiw (1984), this
theory is equivalent to the topologically massive gauge theory with the Chern—
Simons term (Deseat al,, 1982). Indeed, the transversality condition allows us to
introduce gauge potentiald,,, namely a transverse vector can be written as a curl
FH =9, A, = e F,, /2, whereF,, = 3,A, — 3, A, is the field strength.
Thus,F"* appears to be the dual field strength, which is a three-component vector
in 2+ 1 dimensions. Then (4.42) implies the following fi6f,:

sm
9 FH — 75““3 Fos =0,

which represents the field equations of the topologically massive gauge theory.
To describe a neutral spin-1 particle coinciding with its antiparticle, we con-
sider the function

f(X,2) = Y11(X)ZZ! + Y1222 + 2'22) /2 + Y2o(X) P2, (4.43)
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where we have used (4.15) for the conversion to undotted indices. The spin part
of the function (4.43) depends not on three angles as in the case (4.40), but on
two angles only. This function is an eigenfunction of the operﬁgwith zero
eigenvalue. Substituting (4.43) into (4.31), we again obtain Eq. (4.42).

Case 2 Consider now Poincargroup representatiorg, s and T ¢ asso-
ciated withunitary infinite-dimensional irrepsf SU(1, 1) with hlghest (Iowest)
weight. In this case$ can be nonintege§ < —1/2 (discrete series) 8= —1/2
(principal senes) Eigenvalues 8% can take only positive values for discrete pos-
itive seriess® = —S+ n, and only negative valuses for negative afe= S— n,
wheren=0,1,2,....

Let us consider the energy spectrum of the system (4.30)—(4.38) $610.
According to the first equatiompy = +m. The second equation ensures the relation
between spectra of the operatcprcsandsO

Pos’ = ms (4.44)

For representationg? ¢, which correspond to finite-dimensional irrep§ of the
Lorentz group, the value a® can be positive or negative. Therefore, for any
s, there exist both positive-frequency and negative-frequency solutions, and the
representations? ¢ split into two irreps characterized by sigg = +1.

For unitary SU(l 1) irreps with highest (lowest) weight, the spectrum of
2 has a definite sign. FoTS , Which act in the space of analytic functions, the
spectrum of the operatc!cii0 is positive, and fofTg ', which act in the space of
antianalytic functions, it is negative. Therefore, the sign of engxggoincides
with the sign ofs for T& and the signs ofp ands are opposite folfg . Thus, T,
andT ¢ are irreps oM (2, 1).

As in the case of the representatiﬁ#fs, for unique mass and spin there are
four states distinguished by the signsmfands. In the rest frame, there are two
solutions of the system in the space of analytic functions:

Po>0, s>0: f(x 2) = (2n)¥4R)Sem~, (4.45)
Do <0, s<O0: f(x,2)=(2n) Y32 ™, (4.46)

The solutions are connected by time reflecfid2.62). In the space of antianalytic
functions, there are also two solutions:

po>0, s<0: f(x,2) = @2r) 3RS’ (4.47)
Po<0, s>0: f(x,2) = (27)¥3(F)Se" ™. (4.48)

These solutions are connected, respectively, with (4.45) and (4.46) by Schwinger
time reversallsch = CT’, which turns particles into antiparticles. Thus, there exist
four equations distinguished by the sigrs@fnd by the used functionalspace (irrep
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T4 orT5 of the Lorentz group), and any equation has solutions only with a definite
sign of po.

In contrast to the case Gfg,s, where the energy spectrupg is not bounded
both above and below, the energy spectrum has a definite sign. In any inertial frame,
the spectrum is bounded below py = m for the solutions (4.45) and (4.47) and
above bypy = —m for the solutions (4.46) and (4.48).

For the unitary irreps oM (2, 1) under consideration, which correspond to
the irreps of the discrete series of the Lorentz group, integration of the functions
(A3) in the invariant measure (4.12) gives

[ fstx atax Dutx.2) = dss [ Y v 0w 60
n=0

[ stx 214 D@ = 8550 (9. (4.49)
In particular, the states (4.45)—(4.48) have the n&gd(p — p’). For the principal
series,j = —1/24 i, andéj,j, in (4.49) is changed b§(A1 — A,). At the same

time, the integral over the spin space diverges for the representi‘;ﬂgmsvhich
correspond to finite-dimensional irreps of the Lorentz group.

Arbitrary plane wave solutions can be obtained by analogy with the above
case of‘l’rﬂ,s. For example, for the states (4.45), one can get the formula (4.37),
where nowCJg are the coefficients from (A3) ami= 0,1, 2, .... The power
2Sis negative, and the decompositidix, z) = ¢n(2)y¥"(x) contains an infinite
number of terms.

Let us summarize some properties of the unitary irreps under consideration.
Irreps Tt and T ¢ of the Poincae group describe particles and antiparticles,
respectively. The charge densify = Sy is positive definite for particles
and negative definite for antiparticles. The energy density is positive definite in
both cases sincesty, S"y) = ¢SSy > 0. For the unitary irreps, the scalar
densityy Ty is also positive definite, in contrast to the finite-dimensional case. The
existence of positive-definite scalar density ensures the possibility of a probability
amplitude interpretation af (x).

Thus, in 2+ 1 dimensions, the problem of the constructiopositive-energy
RWEsis solved by the system (4.30)—(4.32) for the infinite-dimensional unitary
irrepsT,! ¢ (signs ofpo ands are the same) oF,;, ¢ (signs ofpo ands are opposite)
characterized by the massand the helicitys. These irreps of the Poin@group
are associated with irrep§ andTg of the Lorentz group with lowest (highest)
weight. Charge conjugation, changing signspafands?, leaves the helicitys
invariant and turng ¢ into T ..

An interesting problem is to find an explicit form of the intertwining opera-
tor A for the unitary irrepsT, T, and the representatio‘F;Y‘{S labeled by the

,S° 'm,S
same mass and helicitys, but associated with finite-dimensional nonunitary
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irreps of the Lorentz groupAT? = (Tohs ® Ts)A. The intertwining operator

is nonunitary and must be a functlon of the generators of right translations, since
other generators commute with the Lorentz spin square op@@ﬁrand cannot
change the representation of the spin Lorentz subgroup.

Notice that the 2+ 1 Dirac equation arises also in the case of unitary infinite-
dimensional irrepd g andTg of the Lorentz group not as an equation for a true
wave function, but as an equation for spin-coherent state evolution. In this case,
the equation includes effective mass = |s/Sim,s = —S, —S+ 1, ... (Gitman
and Shelepin, 1997).

Among the above RWE are those that describe particles with fractional real
spin. These equations are associated with unitary multivalued irreps of the Lorentz
group and can be used to describe anyons.

In spite of the fact that the number of independent polarization states for
a massive 2 1 particle is one, the vectors of the corresponding representation
space of irrepdl;t, T, < have an infinite number of components in the matrix

m,s?
representation. Thus, tlzerepresentation is more convenient in this case.

5. FOUR-DIMENSIONAL CASE
5.1. Field on the GroupM(3, 1)

The generators and the action of the left GRR on the functigxs z) are
given by formulas (2.37) and (2.44). For spin projection operators, it is convenient
to use the three-dimensional vector notat&n= %Gijk §', I§k = éOk. An explicit
calculation gives

1 *
S = E(ZUkE)Z — zékai) + -

Py I k sk

B = 5(z0k0, + 20ud) + -+, 2= (22, 8, = (9021 0/07)T; (5.1)
R 1

S = —E(ngax - )?Gka)*() +--,

N i, o« *

B = —5 0oy + xod) + e x = ('Y, 0, = (3/07'9/02")"; (5.2)

Dots in the formulas replace analogous expressions obtained by the substitutions
2->7=(Z'2D.x - x' =ZD.

Since detZ = 1, then any ofz,, z, can be expressed in terms of the other
three, for examplez, = (1 — z,2,)/z;. The invariant measure dd* x SL(2, C)
has the form (Gel'fan@t al., 1966)

du(x, 2) = (i/2)*d*x d?z; d?z, d?z, |21 2. (5.3)
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The functions on the Poincarjroup depend on 10 parameters, and corre-
spondingly there are 10 commuting operators (two Casimir operators, four left
generators, and four right generators).

Both the Poinca group and the spin Lorentz subgroup have two Casimir
operators:

A ~ A 1 - 1 A
p*=D,p", W2=WW", whereW" = Ze"7p,J,, = 5", S,

(5.4)
1 pal ALY 1 AR LV A2 A2
Es,ws" = §5w§§ =5 - B2
1 Voo & & 1 voo &R &R SR
16" SuwSpe = 15" 8L, =SB, (5.5)
Let us consider a set of 10 commuting operators,
P, W2 pS & — 82 88, &, B%. (5.6)

This set consists of operators of momenta, the Lubanski—Pauli op&dtahe
operatopJ = pS, which is proportional to the helicity, and four operators, which
are functions of the right generators. These four operators commute with the left
rotations and translations, and allow one to distinguish equivalent irreps in the
decomposition of GRR. In the rest fram“]S = 0, and the complete set of com-
muting operators can be obtained from (5.6) with the help of the replacement of
pSby Ss.

Functionsf (x, z) on the groupM (3, 1) are functions of four real variables
x* and four complex variables,, z, with the constrainz;z, — z,z; = 1.

The space of functions on the Poinegroup contains the subspace of analytic

functions f (x, z, 2) of the elements of the Dirazzspinor
Zp = (2. 2,). (5.7)
Charge conjugation means ihe transition to the subspace of antianalytic functions
(i.e., analytic functions of*, z;).
According to (2.61), for the space inversion, we haves (z7Hf or

22 A\ pe (-2 z
(zz 22) - ( Y *1> » (5.8)
= —%Z %
This transformation reverses the sign of the boost operﬁoru is easy to see
that, in contrast to charge conjugation, space inversion conserves the analyticity
(or antianalyticity) of functions o¥p.

Similar to the three-dimensional case [see (4.5)], eigenfunctioﬁg aind
BR differ only by a phase factor. Fixing eigenvalues of operafgrand BR, one



Fields on the Poincag Group 647

passes to the space of functionsxéfand elements of the Majorazaspinor

Zw = (2, 2), (5.9)
that is, the space of functions of eight real, independent variables on the manifold
R*x C2, du = d*x d?z;d?z. (5.10)

Thus, inthis space we have eight commuting operators (two Casimir operators, four
operators distinguishing states inside the irrep, and two operators distinguishing
equivalent irreps). Notice that Kihlberg (1964) gives physical arguments for the
necessity of using atleast eight variables in order to describe spinning particles. The
space reflection takes functionsay to functions ofZ,, = (z*, Zd); as mentioned
abovez* andz® have the same transformation rule. Charge conjugation leave the
space of functions oZy, invariant.

Below we will consider the massive case characterized by symmetry with
respect to space reflection and therefore the space of the analytic functions of the
Diracz-spinorZp, unless otherwise stipulated. In this space, the actidn (& 1)
is given by

T(9)f(x,2z2) = f(g7'x, 97z g "2),
(@) = (A", (97" =Uj7,

(02 = U 2. (5.12)

Spin projection operators have the form
~ 1 * % ~ | * sk
S = E(Zakaz — Zok 32), By = E(zm(az + Zoy 8*2). (5.12)
One can compose the combinatidvig, I\?Tk
- 1. N - R
My = E(S‘ —iB) =z0kd,, My =7'9/02%, M_ = 7%9/07",
e 1. . A * - %1 *7 - %7 * 1
M= —5(S+iB0) =70« o, My=2'9/02, M_=Z9/0z, (5.13)

such that [\/I., Mk] = 0. For unitary representations of the Lorentz groﬂb,_
S, Bk = By, and these operators obey the reIatMﬁl = Mk (for finite-dimen-

sional nonunltarylrrepﬁ( S, Bk = —By, ande = —My). Introducing spin
operators with spinor indices
Mg = 0)asS" s Mg = (0)epS" (5.14)

whereo,,, ando,, are defined in (B6), we obtain

ALY

1 ~ _ LA
—5[(0“”)“"\/'(1;9 + (") Mg ], (5.15)
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~ ~ap ~o A A—dﬂ a2
MgM™ =2M*% My ;M =2M . (5.16)
In the space of analytic functions ofz, we have
A 1 ~ 1« *
Myp = E(Zaaﬂ +230.), My = é@d@,‘g + 25 9,)- (5.17)

Taking into account that operatohd, and I\?Tk are subjected to commutation
relations ofsu2) algebra, we obtain the spectra of the Casimir operators of the
Lorentz subgroup:

. . - ~ L . 1
S —B? =2M? + M?) = 2j1(j1 + 1) + 2ja(j2 + 1) = —E(kz —p%—4),

88 = —i(M? - M?) = —i(ja(js + 1) — ja(j2 + 1)) = kp, (5.18)

wherep = —i(j1 + j2 + 1) andk = j; — j». Thus, irreps of the Lorentz group
SL(2, C) are labeled by the paif{, j2). It is convenient to label unitary irreps by
[k, o], where irrepsk, p] and [k, —p] are equivalent (Barut and Raczka, 1977;
Gel'fandet al.,, 1966).

Notice that the formulas (5.11)—(5.18) are also valid if, using the substitution
Zd—> 2, we consider the functions of elements of the MajoraspinorZy, instead
of Zp.

The formulas of reduction on the comp&it)(2) subgroup have the form

jiti2 00
Tiwin= > Tiv Tka =T (5.19)
i=lji=jal j=k

for finite-dimensional nonunitary irreps and infinite-dimensional unitary irreps of
SL(2, C), respectively (Gel'fandtal, 1966). Analogoustothe2 1 case, there are
two types of Poincargroup representations describing the samesspinese types
correspond to finite-dimensional and infinite-dimensional unitary representations
of the Lorentz group. In particular, one may chooses(# jmax= j1 + j2 for
nonunitary finite-dimensionareps (j1, j2) and (i)S = jmin = jo = |j1 — j2| for
unitary infinite-dimensionatreps [jo, p], where jmaxandjmin are respectively the
maximal and minimalj in the decomposition (5.19) of an irrep of the Lorentz
group over irreps; of the compacSU(2) subgroup. Below we will study only
the case of finite-dimensional representations of the Lorentz group.

Consider the monomial basis

(ZH)4()°(2)(2,)"

in the space of functioné(z, 2). The valuesj; = (a + b)/2 andj, = (c + d)/2
are conserved under the action of the generators (5.13). Therefore, the space of
the irrep (1, j2) is the space of homogeneous analytic functions depending on
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two palrs of complex variables of powerj22j,). We denote these functions as
bi1j.(Z, Z)

For finite-dimensional nonunitary irreps8k(2, C), a, b, ¢, andd are integer
nonnegative, thereforg, j, are integer or half-integer nonnegative numbers. One
can write functionsfs(Xx, z, Z), which are polynomial of the powes2= 2j; + 2],
in z, z, in the form

= D D Unr0el 2), (5.20)
jitj2=s my,m;

where the functions
P (z, 2) = NY2(Zh)lms () sy (g ) ot me g,y lemme, (5.21)
N = (29)! [(j1 4+ m1)! (j1 — m)! (j2 + m)! (j2 —mp)!] %, (5.22)

form a basis of the irrep of the Lorentz group. This basis corresponds to the
chiral representation (see Appendix B). On the other hand, one can write the
decomposition of the same function in terms of the symmetric multispinors

%1 af,’f (x) = a(ﬁ..aj’f)) (x)

as follows:

s(X, z, z Z fi (X, z, 2),
j1tje=s
* Lok *
fjljZ(X’ Z,2) = Wal a;]’l? x)z* - - ZaZMZB1 - ZBZJz' (5.23)

Notice that similar generating functions summed oversdfiave been used in
Vasiliev (1992, 1996) to describe massless fields. Comparing decompositions
(5.20) and (5.23), we obtain the relation

jotmz -y

12,2
12, 2™ (5.24)

jitmy o ji—myg

1 2
Py =

Using the invariant tenser’,, and splnorsz“,_a, y = 0/02%, 9% = 8/82-1,
it is possible to construct just four vectors:

A 1. - 1

Vi, =57 oM 7,8y, Vit = Zawz“a“ (5.25)
7 1 Iz 7 L 1 W aaqa

Vll - é ototza Za V22= Eaada 9% (526)

These operators are not functions of generatorll (8, 1) and relate irreps with
different (j1, j2); as we will see below, they play an important role in the theory
of RWE.
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5.2. Relativistic Wave Equations Invariant Under the Proper Poincag Group

Let us fix eigenvalues of the Casimir operators of the Poagganup and of
the Lorentz subgroup:

p? f(x,2) = m? f(x, 2), (5.27)
W2 f(x,2) = —s(s+ 1)m? f (x, 2), (5.28)
M2f(x,2) = j1(j1 + 1) (X, 2), (5.29)
M2 (x,2) = ja(j2 + 1) (X, 2), (5.30)

The spectrum (5.28) of the operat? corresponds to the consideration of
massive spirs particles and massless particles with discrete spin. [For tachyons
and massless particles with continuous spin spectrum different from (5.28), see
Barut and Raczka (1977) and Mackey (1968)]. As a consequence of the last two
equations (recall that we consider the space of analytic functicmi))fwe obtain
that eigenvalues of the operat(ﬁ% and I§§ belonging to the complete set (5.6)
are also fixed,

(%22 = —(j1+ ) f(x. 2 2),
iBRf(x,22) = (j1— o) f(x 2 2). (5.31)

Equations (5.27)—(5.30) define the reducible representation of the proper Roincar”
groupM(3, 1). This representation splits into two representations labeled by the
sign of pp and are irreducible fam £ 0.

Nonequivalentrepresentations are distinguished by eigenvalues of the Casimir
operatorsp® and W2 and by the sign ofy, [see also Barut and Raczka (1977),
Mackey (1968), and Kim and Noz (1986)]. The case of zero eigenvalues of the
operatorsp? andW2 is an exception. This case corresponds to massless particles
with discrete spin, and nonequivalent irreps are labeled by the helicity and by the
sign of pg. On the other hand, one can introduce a chiralityx as j; — j» (or as
the difference in the numbers of dotted and undotted indices). The explicit form
of the chirality operator in the space of analytic functiong.af is given by [see
(B4)]

[ = Z(29,— z; 8%). (5.32)

NI =

In the massless case, helicity is equal to chirality up to sign (Barut and Raczka,
1977). In the massive case, irreps of the proper Poingeotp, which are labeled

by the samen, s, and signpg but by different chiralities, are equivalent. Thus, for
fixed massn and spins = j; + j», the system (5.27)—(5.30) has 2 1 solutions
differing by » = j1 — jo.
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Using (5.15), we can rewrite the Lubanski—Pauli vector (5.4) and the Casimir
operatorV? in the form

n 1 A 1 - — =i
W = 27D, 80 = SiD[(0" )M — (@)sM™]. (5.33)

- R P Iy
W2 = — p2(M2 + M?) — 50D (0" (07) M mer (5.34)

Taking into account the explicit form of the spin operators (5.17) and the symmetry
of ("")ap and ™), ; With respect to the permutation of spinor indices, we rewrite
the last relation as

W2 = — (N1 + M) — 2P, B, (0" )us (67,20 Z* 0
Finally, using the identity
4(0"*)ap () )aﬂ 0" €apsp + 00aOps + 00404,
and the condition of mass irreducibility (5.27), we obtain
W2 = —mP(js + j2)(J1 + J2 + 1)+ 4, V115, V2, (5.35)

where the operatofg): and V., are defined in (5.26). Therefore, foe= j1 + |2,
the necessary and sufficient condition of spin irreducibility is

B V1P,V f(x. 2.2) = 0. (5.36)

For the representations@) and (0s), we have\A/Z"2 f(x, z, Z) = 0 and the condition
(5.36) is fulfilled identically. In the general case, observing that in the momentum
representation the action of the operatqtpﬂ reduces to multiplication by the
numberp, o, z*z*, we come to thalternative conditions

pﬂvlﬂl =0, (5.37)
P Vaf(x.2.2) = 0. (5.38)

The first condition connects the components of momenpyrand complex
spin variables), = 0,,442* z“/2 g,9" = 0. Thus, we have the space of functions
of two four-vectorsp,,, g,,, which are subject to the invariant constraints

p>’=m? p.g* =0 ¢°=0. (5.39)
According to (5.39), inthe restframe, we géil 72 72 = 0. Asimilar approach
to constructing wave functions describing elementary particles was suggested by
Wigner (1963), who restricted discussion to particles of integer spin andjreal
with constraintsp? = m?, p,g* = 0, g?> = —1. Different generalizations of his
approach (Wigner, 1963) have been considered (Biederehaln1988; Hasiewicz
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and Siemion, 1992; Kim and Wigner, 1987; Kuzeekal.,, 1995; Lyakhovictet al,,
1996).

The second condition (5.38) does not affect spin variables and can be written in
terms ofyr (x). For fixedj,, j2, usingthe decomposition (5.23) b¢x, z, 2 interms
of multispinors and also the relatiogy g, a,.. o 2022 . . . 2% = 85 W0y, 27 - . .
Z*, one can rewrite the system

(p? — m?) fi.(x,2 =0, p,o, aaa“ fi,(X, 2) = (5.40)

in the form
(P — M)V, aper..ia (X) = O, (5.41)
0 Y. ap .o (X) = O, (5.42)

whered®® = 9,0 k = 2j;,| = 2j,. These equations describe a particle with
unigue mass and spirs = j1 + j». The subsidiary condition (5.42) is necessary
to exclude components corresponding to other possible spjfis— j2| < s <
i1+ J2; see (5.19).

On the other hand, in order to describe sgjone can use representations
(j1j2), j1 + J2 # s. In this case, according to (5.35), the condition (5.42) should
be replaced by the new subsidiary condition

850" Vaey...apsivin.in 1 (X) = —M[(j1 + j2)(j1 + j2+ 1)
_S(S + 1)]wﬁal...ak,lﬁdl...m,l(X)' (543)

Note that an approach using this general subsidiary condition was not considered
earlier.

Passing on to vector indices, one can see that for integer spins and §§eps (
Egs. (5.41) and (5.42) take the form

(f)z - mz)q)ll-lﬂz---l/«s(x) = 0’ 8Mq>,“~li2---/‘~s(x) O q)l#/:/lz MS(X) = 0’ (544)

where

¢/,L1;L2,,.[J.S(X) = (_1)52_56_3110(1 : asaswal Dtsutl Dts(x)

Equations (5.44), known also as the massive tensor field equations or Fierz—Pauli
equations, are used most often to describe integer spins.

For half-integer spins and irep&f! =), after passage to vector indices,
the subsidiary conditions (5.42) take the form

Wit (X) = 0, G_/maq’uuz---una(x) 0, \I];fuz una(x) =0

"V, (X)) =0, o \If"‘ x)=0

K2 hn

/L/l,z JAnG (X) (545)

wheren = (2s — 1)/2.
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5.3. Relativistic Wave Equations Invariant Under the Improper
Poincaré Group

The improper Poincargroup includes continuous transformations of the
proper group and space reflection operator (parity operairiccording to
(2.61) and (5.8), this operator obeys the conditign= 1 and the commutation
relations

[Tp. Pol = [Tp. P4 = [Te. W2 = [Tp. &1 = [[p. §]1 =0,  (5.46)

o ~ s ~ 2R
[p, Pl+ =[lp, B+ =[lp. Bl =0. (5.47)

States with definite total parity are defined as eigenfunctions of the opégator
(pf(x,2) = +f(x,2). (5.48)

Form > 0, irreps of the improper Poinaagroup are labeled by an orbit
defining the masa and the sign ofgg and by the irrep of the little grou@(3)
defining spirs and intrinsic parity (Barut and Raczka, 1977; Mackey, 1968; Tung,
1985). In the rest frame, the intrinsic parity coincides with the total.

The Casimir operators of the Lorentz group do not commute with the parity
operator, {p, M?] = M2, [p, M?] = M2, and parity transformation combine two
equivalentirreps labeled by Lorentz indicgs (j2) and (2, j1) (by chiralities£A)
of the proper Poincargroup into one representation of the improper group. The
latter representation is reductible and splits into two irreps differing in intrinsic
parity n = £1. Thus, we cannot use the operatM§ M? to select invariant
subspaces, and instead of the set of eight commuting operators

p., W2, pS, M2, M2 (5.49)
used above in order to construct the system (5.27)—(5.30), we should consider
another set. Notice that parity operatercannot be used directly for identifica-
tion of invariant subspaces since, according to (5.47), it does not commute with

translations and boosts.
The simplest possibility is to consider the system

p?f(x,z 2) = m*f(x, 2 2), (5.50)
W2£(x, 2z 2) = —s(s + 1)m? f(x, z, 2), (5.51)
$t(x,z2) = —sf(x, 2 2). (5.52)

The last equation fixes the powes 2 2(j; + j,) of the polynomial inz, z; see

(5.31). The first two equations are the conditions of mass and spin irreducibility.
Therefore, the system describes fixed mass and spin, but the Rogroa rep-
resentation defined by this system is reducible. This representation decomposes
into 2(2s + 1) irreps differing in the chirality. = —s, ..., s and sign ofpg.
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Supplementing the system (5.50)—(5.52) by the equation
iB5f(x,22) = +(j1— ) T (x, 2. 2), (5.53)

which change the sign under space reflection, it is possible to extract compo-
nents corresponding to the representatipn jz) & (j2, j1)- If we consider only
the components labeled by, ( j2) and (j2, j1), then for j; # j,, the mass and
spin irreducibility conditions (5.50) and (5.51) leave {2 1) independent com-
ponents corresponding to the direct sum of four improper PoingeaUp irreps
differing in the signs of the energyy and the intrinsic parity). But states with
definite intrinsic parity arise in such an approach only as linear combinations of
the solutions ofwo systems (5.50)—(5.53) with different sign in the last equation
(i.e., solutions with fixed chirality).

Let us investigate the possibility of constructing a system of equations that
remains invariant under space reflection and has solutions with definite intrinsic
parity. For this purpose, it is necessary to consider equations that combine equiva-
lentirreps of the proper Poinaagroup labeled by different chiralities= j; — jo.

In the other wordsif is necessary to consider supplementary operators that define
some extension of the Lorentz grolipese operators, replacil\]jg2 andM? in the
set (5.49), must commute with all the left generators of the proper Peigcaup
and with parity operator ». We suppose that one of these commuting operators is
linearin p.
A general form of the invariant equations linearfins
P, V" f(x,2) = xf(x,2), (5.54)

whereV# transforms as a four-vector function oandd/oz.

The above vector operato‘v‘;‘,j of (5.25), (5.26) connect irreps with different
(i1, j2)- OperatorS/l“z, V,; conserve; + jo, and operatorvll, V22 conserve; —
j2. One can consider any of the relations connecting two scalar functions

FA)M\A/lﬂth,jz(x’ 2.2) = xi2fj, 1,01 (X2, 2),
P VA, 1,(x, 2,2) = ao1fj 151X 2, 2), (5.55)
P Vi i (X, 2. 2) = 2 flat o2 (X. 2, 2),
B Va1, (X, 2. 2) = o fj, 1, 1(X,2,2), (5.56)

as an RWE. Thus, the operatt in (5.54) is a linear combination af}.
Let us consider finite-component equations invariant with respect to space
reflection. This means:

1. The operatof)ﬂ\A/“ is invariant under space reflection.

2. Theequation has solutiofigx, z, 3) =" Yn(X)on(z, Z), where functions
¢n(2) carry a representation containing a finite number of irrgpsj¢).
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It is easy to see that faot}; # 0, the operatof(/l"1 cannot be contained in
V. In this case, fope,, # 0, one can separate from the system of equations for
functions fj, j,(X, z, 2), f(x, z, 2) = fj (X 2z Z) the independent equation
for the function characterized by maximial+ j», which does not contaiﬁz"z. (It
is not necessary to use operaté’ﬁ and\A/Z"2 since these operators leaye— j»
invariable and cannot connect irreps with different

_Relating to operator¥//, and V};, one can see that only the combination

r"jp,rﬂv

o ~ ~ 1, . .
' =V5+V) = 5(0““0‘Za3« + aof‘dz“Qa), (5.57)

isinvariantunder space reflections. Operalttsonnect the representation j-)
with (js+1j,—1) and (; — 1j, + 1) and conservg, + j,. These operators
obey the commutation relations

(8%, 1] = i (T — ™ 'm, (5.58)
(", ] = -iS", (5.59)

which coincide with the commutation relations of the matrigég2. An explicit
calculation shows thdt, I"* depends on the irrep of the Lorentz subgroup,

[, 0* =2j1 4 2j2 4 4j1]2. (5.60)
Supplementing the generators of the Lorentz group by the four operators
g e, - _@a (5.61)

we obtain
[§°, 8 =i (e8! — 28 — I 4 298 M =0 -1 (5.62)

Thus, the operatoréab, a,b=0,1, 2, 3, 4, obey the commutation relations of the
generators of the 3 2 de Sitter grouisQ3, 2) ~ SH4, R). This group has two
fundamental irreps, namely the four-dimensional spinor iffgg [by matrices
SH4, R)] and the five-dimensional vector irrdlpy) [by matricesSQ3, 2)].

Using (5.5), (5.18), and (5.60), we obtain for the second-order Casimir oper-
ator of the grousp4, R)

SSPf(x.2.2) =4S+ 2)f(X. 2.2). S=j1+ 2.

Thus, we deal with symmetric representationsSpf4, R), which we denote as
Tpso) (see Appendix B). These irreps can be obtained as a symmetric term in
the decomposition of the direct produgT10)?°. IrrepsTjzsoj characterized by
dimensionality (B4 3)!/[6(2S)!] combine all finite-dimensional irreps of the
Lorentz group withj; + jo = S.
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However, it is obvious that the equation
p.["f(x,2,2) = xf(x,2 2) (5.63)

by itself does not fix spis and massn, defined by (5.27) and (5.28), or the power
j1+ Jo of the f(X, z, i) in z, Z In the rest frame, it is easy to see that even for
fixed S= j; + j», this equation fixes only the produtts= x%,s < S.

Let us consider the set of eight commuting operators

p,.. W2, pS(or S in the rest frame)p, ', 88" (5.64)

actingin the space of functions of eight variabtés z*, Ze.In comparison with the
set(5.49), we have replaced two rlghtoperamFsM byoperatorsp T, §pSP
invariant under parity transformation. Notice that instea&gS™, one can use
the operatonS"g with eigenvalues equal to the minus power of the polynomial in
z, 2, see (5.52).

Invariant subspaces are labeled by eigenvalues of operators

P2t (X, z 2) = m*f(x, Z, 2), (5.65)
W2f(x,z 2) = —mPs(s + 1) f (X, Z, 2), (5.66)

P f(x, 2 2) = mBf(x, z, 2), (5.67)
&SP f(x,2,2) = 4S(S+ 2)f (x, 2, 2). (5.68)

Unlike Egs. (5.29) and (5.30), which fil and j, separately, the last equation

of the system fixes the irreéfog of the 34 2 de Sitter group and therefore the

power S = 2j; + 2j, of the polynomial inz, z Irreps of the Poincargroup

characterized by spis < Scan be realized in the space of these polynomials.
In the rest frame,

P2 f(x,2 2) = m?f(x,z 2),
A * * A 1 - * -
Pol0f (X, z, 2) = mBf(x, 2 2), I'°= E(GOW 2,00 +020,2°0%).  (5.69)

According to the first equatiorp, = +m, and correspondingl§ is a product of
eigenvalue of operatdt® and signpo. For po = m, any function characterized by
n; — Ny = 2sis the solution of Eq. (5.69), wherg is the power of homogeneity
in the variables £+ 21), 2%+ 22), andn; is the power of homogeneity in the
variables ¢1— 7;), (22— 2,). Therefore, fopy = —m, any function characterized
by n; — n; = —2sis the solution of Eq. (5.69).

Let us show that the relation

I5l<s<S (5.70)
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holds. The variableg® and z, have the same transformation rule under space
rotations. Thus, the pairg{+ z;), (Z2+ 25) and ¢1— z;), (2— z;) are spinors

of rotation group, but are characterized by opposite parity. The polynomials of
power 2’ in the first pair of variables or 2 in the second pair of variables
transform undef; or T;» of the rotation group. At fixedl’ andj”, the relatiorg =

(j” — J”) signpo holds, and the space of polynomials of the pow@e22j’ + 2j”
corresponds to the direct product of the representafignand T;-. This direct
product decomposes into a sum of irreps, labeled by|j" — j”|,..., '+ j’,

and therefore spia runs from|3| up to S.

In particular, for|S| = S, the spin irreducibility condition (5.66) is a conse-
guence of other equations of the system, and the spin is equal to one half of the
polynomial power. Below we restrict our consideration to this case, which allows
us to describe the spmby means of the irrep of the-B 2 de Sitter group with
minimal possible dimensionality. Correspondingly,3ce S, we will consider the
system

P2 f (x,2) = m?f(x, 2), (5.71)
P, " f(x, 2) = msf(x, 2), (5.72)
80 F(x, 2) = 4s(s + 2)f (x, 2). (5.73)

In the rest frame, the general solution in the set of the polynomial of posvier 2
Z, Z has the form

S
fms(x.2) = D Co€™ (2 +2)"(Z+2 )™
$=-—S

+CLe ™ (- )T (P-2,)T", (5.74)
wheres; is the spin projection,
A A 1 * 1 * -
Sfx,2)=sf(x.2, S= E(zlal + 79! - 729, — 2,0?). (5.75)

Thus, for uniqgue mass and spins, there are 8+ 1 independent positive-
frequency solutions ands2+- 1 independent negative-frequency solutions belong-
ing to two irreps of the improper Poine@agroup. In the casé = —S, which
corresponds to the change of sign in Eq. (5.72), the general solution is obtained
from (5.74) by the substitutiore{+ id) <« (- Zd). It follows from (5.74) that

for half-integer spins the sign &fis the product of sigipg and the intrinsic parit§.

9 According to (5.74), in the rest frame for half-integer spin, positive-frequency and negative-frequency
states are characterized by opposite parity. One can show (Ahluwalia et al., 1993; Gaioli and Alvarez,
1995; Gavrilov and Gitman, 2000; Ryder, 1988) that for fixed maaad representatior%(O) @ (0 %)
of the Lorentz group, this condition is sufficient to derive the Dirac equation.
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Only the four-dimensional irrep of the-8 2 de Sitter group corresponding to
spin 1/2 remains irreducible under the reduction on the improper Lorentz group.
For spin 1, the 10-dimensional irrep splits inte-& (antisymmetric tensor and
four-vector), and for spin/2, the 20-dimensional irrep splits into{812, as so on.

Consider plane wave solutions corresponding to a particle moving afong
They can be obtained from the solutions in the rest frame (5.74) by means of the
Lorentz transformation

P=UPUT, wherePy=+diagim, m}, U = diag{e ?, €*} € SL(2, C),
where the sign corresponds to the sigrpef

p. = Kk, signpe, Ko =mcosh2, k;=msinh2a, e = /(ko £ k3)/m.
(5.76)
Thus, it follows that

fr s (X, 2) = ik’ (Zher | 7, e8)t (272 4 7,e2)%
+ Cpe o (Zlgr— 7, 673) % (2R - 2,e7)T . (5.77)

In the ultrarelativistic case, for positi it is convenient to rewrite (5.77) in the
form

ke\® [ _
fmss(X.2) = (%) {[clék°X°+k°X3 + Co(—1)F e ko'~

srsar o ko — ks 2
x (2)°7%(2,) 53+o<k0+k3> } (5.78)

The main term in (5.78) corresponds to functions carrying ir?@b F) A =S3,

of the Lorentz group. The contributions of other wrep%g—( s=¥) are damped

by a factor C‘—‘@)'* *I, Passing to the limia — o0, (or m — 0), we obtain
the states W|th certain chirality = j; — j, = s3 (for a — —o0, with chirality

A= j1— j2 = —S3, respectively). In particular, inthe limit, the states characterized
by helicity s3 = +s correspond to the representati@0f & (0s) of the Lorentz
group.

Taking into account that operatd«/{l(vfz) lower (raise) chirality» by 1 and
the decomposition

S
fsx.22) =Y f,,(x.22). wheres=ji1+jo. r=j1—j2 (5.79)

A=—s
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one can write Eq. (5.72) in chiral representation in the form

B, Vi fs

s—3:3 1:s.O
p/tvlz fso+ p/LV s-11 | =mg fs_%’% , (5.80)
puvlzf%’s,% fo,s

Form #£ 0, this equation binds % [s] irreps of the improper Lorentz group and
allows one to express components corresponding to the ig@pif terms of
components corresponding to the irrep—(% %) and so on. This, in turn, for
s=1,3/2, 2, allows one to pass from the first-order equations for the reducible
representation to second-order equations for the irrep of the improper Roincar”
group. For example, fas = 1, excludingfy o and fo 1, we obtain

m?f11(x, 2) = [0, V5, B, V51], f11(x, 2). (5.81)

In the general case, one also can to pass from the system of first-order equations
(5.80) on the reducible representation to higher order equations for the irrep, for
example, to the equations of orde#-1[s] on the components transforming under
irreps G 3) or (% %) &) (% ZST”) for the cases of integer or half-integer
spin, respectively.

Let us consider some particular cases.

Fors = j1 + j» = 1/2, we have

£306.2) = £u(OZ+ U¥() 3= ZoUp(x), Wn(x) = ( 1209 ) (5:82)
: ¥ )

where Zp is given by formula (5.7)9; If we substitute (5.82) into Eqg. (5.72) and
compare the coefficients at and atz,, in the left and right sides, we obtain the
Dirac equation

By o) = mio(d. v = (0 % ). (5.83)

ot
According to (5.8), for space inversion, we obtain

ZD\PD(X) —) ZD\I’D ()?) ZDJ/O\I»’D()_()

wherex = (x°, —xK). The matrixy® = diag{c®, —o°} corresponds to the chirality
operator (5.32).
A complex conjugate function corresponds to the charge conjugate state,

f12(%2) = —Yu(X)Z— X& (X) %

(the minus sign is from the anticommutation of spinafsz® = —z,%*) or in
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matrix form,

C E3 *
ZpWp(x) = ZpWp (X) = ZpV5(X),

(1) () e

whereZ, = (z%, Z,), and Zp obey the same transformation law. Thus, we get
different scalar functions to describe particles and antiparticles and hence two
Dirac equations for the two signs of charge, respectively. This matches completely
with the results of Gavrilov and Gitman (2000). It was shown there that in the
course of a consistent quantization of a classical model of a spinning particle,
such a (charge-symmetric) quantum mechanics appears. At the same time, it is
completely equivalent to the one-particle sector of the corresponding quantum
field theory.

Real functionsfy>(x, z) _fl/2 (X, 2) describing Majorana particles depend
on the elements afy; (5.9), and correspondinghy®(X) = —x*(X) = i02x(X).
Space reflection maps these functions into functions,pf

Fors= j1 + j» = 1, we have

f1(X, 2) = xap (02" 2 + ¢L ()2 25 +¥*F (X) 2,25 = ,.(X)9" + > Fu(X)a"",
(5.85)
where

1 4
Q" = So52 7. Q=0
1 _ ok
OQuv = —Qup = E[(Guv)aﬁzazﬁ + (qu)dﬁ Z“Zﬁ ]s (586)

®,.(X) = —0/% (X,

Fuw () = —2[(0,00)as x“ (X) + (G ¥ ()] (5.87)
Substituting (5.85) into Eq. (5.72), we obtain

M) = BT, Map(6) = 5,000,
nwm=mwwmm+%wm» (5.88)
ME,(X) = 3, P, (X) — 0, Pu(X), mMmP,(X) =0"Fu.(X). (5.89)

The Duffin—~Kemmer equation in the form (5.88) or (5.89) is the equation for the
irrep Tppq) of the 34 2 de Sitter group and thus for the reducible representa-
tion (10)® (% %) @ (01) of the Lorentz group. This representation contains both
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the four-vectord,, (x) and the antisymmetric tensé,,(x), which correspond to
chiralitiesh = 0 andi = 1. Excluding components,,,(x), we obtain a second-
order system only for the componedts (x) transforming under the irreg §) of
the Lorentz group:

(P —m?)d,(x) =0, P'd,(x)=0. (5.90)
One can rewrite the operatf)gl:" in terms of the complex variableg andg*”,
P, =—ip,(a"'8/39" — 0,8/30y.). (5.91)

Such a conversion to vector indices is possible when considering any integer spin.
Notice that two sets of real spin variables with vector indices can be obtained by
substituting elements &y andZy, instead ofZp into (5.86).

One may describe the neutral spin-1 field, in particular, by a real function of
the elements of the Majorarmaspinor, f;1(x, z) =, (x, z). However, the spaces
of quadratic functions of the Diraz-spinor Zp and Majoranaz-spinor Zy, are
noninvariant with respect to charge conjugation and space reflection, respectively.
To describe a spin-1 neutral particle coinciding with its antiparticle, one may use
bilinear functions ofZp andZ,.

For the cases = 1/2 ands = 1, the first equation of the system (5.71)—
(5.73) (Klein—Gordon equation) is the consequence of the other equations. For
s > 1, the solutions of (5.72) are characterized by spin and mass spestrgm,
{s,s—1,...,1}ors ={s,s—1,...,1/2}, my = ms/s. Thus, for higher spin
fields, the Klein—Gordon equation is an independent condition, allowing us to
exclude from the spin spectrum all spins except the max@msalj; + j».

The cases = 1/2 ands = 1 are also exceptions in the sense of simplicity
of labeling the components by spinor or vector indices. The number of indices of
symmetric spin-tensors necessary for labeling higher spin components increases
in spite of the fact that it is sufficient to use only three operators and therefore only
three numbers for labeling the states belonging to symmetric irrep&(Ef, 2).

In particular, for a spin-3/2 particle, there exist four kinds of components,
namely Yus,, Yapy» Vapy Yagpy» corresponding to four possible values of the
chirality. For a spin-2 particle, the representation in termgy6fand g*¥ is
cumbersome,

1 1
fa(x. @) = @, (X)a"q" + 5 P, (A Q” + 2 Fuv e ()00, (5.92)

with the necessity to fix independent components by means of relajiayis=
0, g,,9" + g,vq” = 0, and so on.

Thus, beginning from spin 3/2, it is convenient to use the universal notation
w;‘;}f‘? (x) associated with the decomposition (5.20) over the monomial chiral basis
(5.22) [see also (B11)—(B13)]. Two indicgs j» label spins = j; + j» and chiral-
ity A = j1 — j» and two indicesn;, m;, label independent components inside the
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irrep of the Lorentz group. This notation is also suitable for infinite-dimensional
representations.

By analogy with the 2+ 1 case, one can find plane wave solutions of the
system (5.71)—(5.72) for any spin s in general form without using the matrix repre-
sentation. Corresponding to the states of a particle moving afbarp eigenstates
of the operatom; S with eigenvaluesp|o, whereo = s3signps is the helicity.
These states have the form

S
fm,s,a(xa Z) — Z Caelkox0+k3x3(zlea + Ziefa)SwLa (ZZefa + Zéea)37a

o=-—S§

S
+ Z Ca/e—ikoxo—kgx3(zlea_ 21 e—a)s—a(ZZea_ zze—a)s+a’ (593)
o'=-s

wheree? is given by (5.76). For a rest particle, one can obtain the general solution
characterized by the spin projectishin the directions oh from (5.74) by the
rotationzy = Ugz,, U C SU(2). For a particle characterized by a momentum
directionn and helicityo, starting from the state (5.93), one can obtain the solution
by an analogous rotation.

The improper Poincargroup includes space reflection, which interchanges
the representationgy(, j2) and (j2, j1). Therefore, we consider the equations con-
necting these representations [and the corresponding components of the solutions
of the system (5.71)—(5.73)] in more detail.

In the casej; = jo, solutions of the system (5.71)—(5.73) are characterized
by fixed spins = j; + j» and massn. Thus, the relations (5.27)—(5.30) are valid,
and corresponding 262t 1) components obey the equations for a massive tensor
field (5.44).

In the general case, the equations connecting the components transforming
under irreps [1, j2) and (j2, j1) of the Lorentz subgroup have the form

. P 2 * . *
(2i2)! (P Vo) F111a(x, 2, 2) = (2j1)! MPH £, (x, 2, 2),

@i (P V) F1(x, 2. 2) = Qi) M £,1,(x,2.2),  (5.94)

wherej; > o, [A| = j1 — j2. These equations are invariant under space reflection.
Using the decomposition (5.79) and the explicit form of the general solution (5.74)

of the system (5.71)—(5.73) in the rest frame, one can prove the validity of (5.94)
by direct calculation. Going over to spin-tensor notation, we get

B e AL P B WA L wgllg;'l? (x) = mZMIWSI{'Lj;jiZl (x),
Gupee-Gii GG
p/"al:;ifrldzjﬁl T pvo—‘;ZiléIZil 1’00(11"'0‘221]21 (X) = m2|)‘|waf"‘azzlllz (X) (595)
Equations (5.95) are consequences of the system (5.71)—(5.73), but unlike this
system, in the general case, they require supplementary conditions to fix mass and
spin.
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Equations (5.95) are first-order equations only in the ¢ase- 1/2, which
corresponds to representatiorféf( 2"7*1), i = j1+ j2, describing half-integer
spins. In this case, going over to vector indices and supplementing the equations by
subsidiary conditions (5.45) [which also are consequences of the system (5.71)—
(5.73) and exclude components wath: j; + j»], we obtain the Rarita—Schwinger
equations (Rarita and Schwinger, 1941)

(f’,ﬂ’“ — MWy (X) =0, Y W, (X) =0, (5.96)

wheren=2s—1 and ¥,,..,,.(x) is a four-component column composed of
Wypa(X) @NAWE (X). The condition$# W,,,,,...,,, (X) = 0and¥/. . (x) =0
appear as consequences of these two equations (Ohnuki, 1988).

The caséx| = s corresponding to representatios®] and (0s) is preferred
because of the minimal number of components. In this case, Eq. (5.95%-are 2
order Joos—Weinberg equations (Joos, 1962; Weinberg, 1964, 1969) of so-called
2(2s + 1)-component theory,

PuO o PO BB Y g (X) = M),
PruGii PO, W = (X) = MYy (X)- (5.97)

In the rest frame, as a consequence, we ob;@fn: m?*, and fors > 1, the
Joos—Weinberg equations have solutions with complex engygyo| = m. The
existence of such solutions was pointed out also in Ahluwalia and Ernst (1992).

5.4. Relativistic Wave Equations Invariant Under the Improper
Poincaré Group. Equations for Several Scalar Functions

We have considered the linear equationsoieescalar function on the group.

The condition of invariance under space reflection leads to the system (5.71)—(5.73)
for a particle with spirs = j; + j, and mass.

For the construction of invariant wave equations, one may also use the oper-
ators f)M\A/i‘;, which are not invariant under space reflections. Using several scalar
functions f (x, 2), it is possible to restore the invariance under space reflections.

In particular, Egs. (5.55) containing operat&f{é‘z(k) and\72"1(k) connect two
scalarfunctions. Using the decomposition (5.23) in terms of spin-tensors, we obtain
the Dirac—Fierz—Pauli equations (Dirac, 1936; Fierz and Pauli, 1939),

Y (0) = KV (0
Do hi Vet () = 055 %, (). (5.98)

These equations connect two functions transforming under irr%psg '5) and
5 '5 + %) of the Lorentz group and fan = | map to one another under parity
transformation.
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Let us consider a system of equations of the form (5.55), (5.56), which
connect several scalar functions with differgnt j,. The equations of this sys-
tem connect the representatiof,(j.) with at least one of the representations
(j1x1, j2F1),(j1£1, j £ 1). This allows one to identify this system with the
general Gel'fand—Yaglom equations (Gel'fand and Yaglom, 1948; Gel‘éhadl,
1963)

(@, — )Y =0, [S*,a"]=i("a" — n*'ab). (5.99)

In the present approach, the latter relation is a consequence of the commutation
relations ", V2] = i (" Vi — y** V). This relation is necessary for Poinear”
invariance of the equations (Barut and Raczka, 1977; Gel'éiradl, 1963).

Supplemented by the commutation relations”,[x"] = S**, finite-
component equations of the form (5.99) are known as Bhabha equations (Bhabha,
1945), although for they were first systematically considered by Lubanski (1942).
These equations are classified according to the finite-dimensional irreps of the
3+ 2 de Sitter groups((3, 2). Other possible commutation relations of the ma-
tricesa are discussed in Castell (1967).

Equation (5.72) considered on a scalar function is a particular case of the
Bhabha equations. This case corresponds to symmetric iffggsof the 3+ 2
de Sitter group. Generally speaking, the Bhabha equations are characterized by
a finite number of differentm ands. Therefore, these equations connect fields
transforming under nonequivalent irreps of the Poiagaidup.

If the equations include the operatq“1,§\71"1 and ﬁM\A/Z"z, then either the equa-
tions describe at least two different spgr the conditiors = j; + j, connecting
spins with a highest weight of the irrep of the Lorentz group is not valid.

We cite as an example the system connecting irreps (0 0) 1;1@(] 6f the
Lorentz group:

B Vit foolx, 2) = 21 f13(x,2). B V5afy 3(x,2) = M2 foo(x,2)  (5.100)

where foo(X, 2) = ¥(X), fu(x 2) = vl (x)z* §ﬁ; in componentwise form, we
havep, v = 21y, p,v" = x2¢. In the rest frame, we obtamy, = 2, = m.

Thus, the system (5.100) is equivalent to the Duffin equation for scalar particles,
which corresponds to the five-dimensional vector iffgp of theSQ3, 2) group.

5.5. Relativistic Wave Equations Invariant Under the Improper Poincaré
Group. Equations for Particles with Composite Spin

Many particle systems are described by functions of the sets of variables
X()» Zi) Z;)- Here we will consider not many-particle systems in the usual sense,
but objects corresponding to functiorfgx, z), z(l), s Z(m)s z(n)) [or, briefly,
f(z, {zH})], that is, to functions of one set of and several sets a&f One may
interpret these objects as particles with composite spin.
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As an example, we will consider the lvanenko—-Landaaklér (or Dirac—
Kahler) equation (Ilvanenko and Landau, 1928hl€t, 1962). Let us write scalar
function f (x, z), Z(2)) linear inz) andz) in the form

f (%, Za)y 22) = ZPW(x)(2&)" Z z9), wi; (x)( z(z)) . (5.101)

whereZp = (22 2122), andW(x) is a 4x 4 matrix with a transformation rule
W (x) =U0w)U)f, U =diagu, U™,

in contrast to the transformation rulg,(x") = U wp(x) of the Dirac spinor (5.83).
Let us impose the equation on the first (“left”) spin subsystem,

(f’uf‘ﬁ) —m/2) f(x, 21y, Zz)) = 0, (5.102)

and we do not impose any conditions on the second (“right”) spin subsystem.
Writing (5.102) in componentwise form, we obtain the Ivanenko—Landaitre{™
equation in spinor matrix representation

(Poy" — MW (x) =0. (5.103)

According to (5.103), the 16 components (x) obey the Klein—-Gordon equation,
and therefore the mass is equalnto The spin of both subsystems is equal to
1/2. The spin of the system is indefinite, and there are both spin-0 and spin-1
components.

The consideration of this equation is associated mainly with attempts to de-
scribe fermions by antisymmetric tensor fields [see, e.g., Benn and Tucker (1983,
1988), Bullinaria (1986), Obukhov and Solodukhin (1993), and also Ivanetréto
(1985) as a good introduction]. The spin subsystems (“left-spin” and “right-spin”)
were considered in Benn and Tucker (1983) and Obukhov and Solodukhin (1993).

Let us consider now linear symmetric functionszgf, . . ., Znp):

far (% {z0)}) = Va0 00 Y 20 20 Zoays, ++ Zoys (5:104)

where the symmetric splnonfz '''''''''' & s, (X) transform under the irreps1(2,1/2),
and all permutations of,1..,n + | are summed over. As a consequence of the
symmetry of the multispinors with respect to index permutations, spin subsystems
are indistinguishable, and this allows us to use functions of several sets of spin
variables for describing the usual particles.

One obtains the Dirac—Fierz—Pauli equations (5.98) by acting by the operators
\7 ) andV21(k) on the functions (5.104) corresponding to |rre954{ 5 2) and

(g 5 2) of the Lorentz group:

g,%+%(x, {Z(i)}) = %f%+%_\z(x, {Z(i)}). (5.105)
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In the general case, a linear symmetric functiore@f k =1, ..., 2j, has
the form
fl (X, {Z(|)}) - Z w """ : (X) Z(l) Z(n) Z(n+1)a1 “e Z(n+l)d|' (5.106)
n,l;n+l=2j

and corresponds to the symmetric part of the representatio8)@ (0, 3))?.
This symmetric part expands into a direct sum of irres o), j1 + j2 = j. We
impose on each spin subsystem the condition

(f)uf‘éf() — m/2) f (X, Z(1)s « o s Z(zj)) =0, k = 1,..., 2] (5.107)

Rewriting this equations in four-component form, we obtain the Bargmann—-Wigner
equations (Bargmann and Wigner, 1948; Greiner, 1997; Ohnuki, 1988)

(f’;},y(lli) - m)akﬂkwﬁlﬂkﬁﬂ (X) = o (5108)
As a consequence of (5.107), we obtain the equations for the system as a whole:

([A)2 — mz) f (X, Z(1), - -+ Z(zj)) =0,

(B[ —m9) f (X, za), ... 22p) =0, [* =) Tf.  (5.109)

which are analogous to Eqgs. (5.71)—(5.72) for the casej; + j.. Both the
Bargmann—Wigner equations and system (5.109) have2( independent so-
lutionsyr(x), and therefore these systems are equivalent.

5.6. Relativistic Wave Equations: Comparative Consideration

In the framework of the group-theoretic classification of the scalar fields
f (x, ) on the Poinca¥ group, we have obtained two types of equations describing
unigue spin and mass, namely equations for the eigenfunctions of the Casimir
operator of the Lorentz spin subgroup §indj, are fixed; see (5.30)] and equations
for the eigenfunctions of the Casimir operator of tB€(3, 2) group (the sum
j1+ j2 is fixed). Below we will consider comparative characteristics of these
equations and also the cage [2) @ (j2 j1) corresponding to irreps of the improper
Poincag group, but requiring two scalar functions for its formulation.

1. Equations for the functions corresponding to the fixed irjeg4) of the
Lorentz group. Mass and spinirreducibility conditions leaves2(2l) independent
components corresponding to two improper Poiaaaoup irreps differing in the
sign of pp. Fors = j; + j», the equations in spin-tensor form constitute the system
of the Klein—Gordon equation and the subsidiary condition (5.42), which elimi-
nates components with other possible values of sgor fixed j1, jo|j1 — j2| <
S < j1+ j2. Fors # j1 + o, one should consider the general subsidiary condition
(5.43). An alternative to the use of the subsidiary condition is to consider functions
of momentum and spin variables with invariant constraints (5.39).



Fields on the Poincag Group 667

There are two preferred cases. The first corresponds to the representations
5 3) mapping onto themselves under space reflection and are most often used
to describe integer spins. The second corresponds to the representa@paad
(0s). In this case, there is no necessity to impose subsidiary conditions since they
are fulfilled identically.

2. Equations for functions corresponding to the representatigng) and
(j2 j1), J1 # ]2, which are interchanged under space reflection. Unlike the equa-
tions considered above for fixgg, j», these equations in the general case are not
formulated as equations for one scalar functiqix, z). The conditions of mass
and spin irreducibility leave 4&+ 1) independent components corresponding to
four improper Poincar group irreps differing in the sign qfy and intrinsic parity
n. To choose 2(2+ 1) components corresponding to fixed sigmair pon, it is
necessary to supplement these conditions by Eqgs. (5.94) connecting components
corresponding tojg j2) and (j2 j1).

Equations (5.94) are first-order equations only for the representations
(j+ % Nneqgi+ %). These representations and the associated Rarita—Schwinger
equations (5.96) are most often used to describe half-integer spins. However, just
as in the case of representationg §, subsidiary conditions supplement the field
equations, and the number of equations exceeds the number of field components.
Therefore, one has an overdetermined set of equations, which, although consistent
in the free-field case, fos > 1 becomes self-contradictory with minimal elec-
tromagnetic coupling (Fierz and Pauli, 1939). In order to avoid inconsistency, it
is possible to give a Lagrangian formulation, introducing auxiliary fields (Fierz
and Pauli, 1939; Singh and Hagen, 1974a,b), but this formulation leads to aca-
sual propagation with minimal electromagnetic coupling (Capri and Kobes, 1980;
Tung, 1967; Velo, 1972; Velo and Zwanziger, 1969; Wightman, 1978; Zwanziger,
1978).

For the caseq0) @ (0's), one can construct the Z2- 1)-component theory,
but the corresponding Joos—Weinberg equations of osidiods, 1962; Weinberg,
1964) [see (5.97)] fos > 1 also have solutions with complex energy.

The second-order equation for the representation® (0s), [ p* — Z—ié’” X
F. —m?y(x) =0 (Feynman and Gell-Mann, 1958; Hurley, 1971, 1974;
lonesco-Pallas, 1967), for a free particle possesses# (@ independent compo-
nents differing in spin projection and in signs@f and,. On the other hand, this
equation describes unique mass and spin and is characterized by casual solutions.
In particular, exact solutions in an external constant uniform electromagnetic field
are known (Kruglov, 1999). One may rewrite the above equation as a first-order
equation with minimal coupling for representatioss0) & (s— 3 3) ® (3 S —

%) @ (0 s). As noted in Tung (1967), this is the simplest class of representations
describing unique mass and spin, which led to first-order equations without sub-
sidiary conditions.
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3. Equations (5.71)—(5.72) for eigenfunctions of the Casimir operator (5.73)
of theSQ(3, 2) group with eigenvaluesss + 2),s = j1 + j2:

(" —m9)f(x.z2) =0, (PP—m)f(x,z2)=0. (5.110)

The condition of spin irreducibility (5.51) is a consequence of this system.

The first equation of the system is the Bhabha equation (Bhabha, 1945;
Lubanski, 1942) corresponding to the symmetric irfgps o of the group
Sp4, R) ~ SO3, 2). This equation represent a straightforward higher spin gen-
eralization of the Dirac and spin-1 Duffin-Kemmer equations. Both the Bhabha
equations and the problem of minimal coupling for these equations were consid-
ered by Krajcik and Nieto [see Krajcik and Nieto (1977), which contains refer-
ences to six earlier papers]. The theory is casual with minimal electromagnetic
coupling (Krajcik and Nieto, 1976), but in the general case, the Bhabha equa-
tions describe multimass systems. The connection of the Rarita—Schwinger and
Bargmann-Wigner equations with the Bhabha equations also was considered in
Loideet al.(1997).

The solutions of the system (5.110) have components transforming under
2s+ Lirreps (1, j2), j1 + j2 = S, of the Lorentz group. But the components cor-
responding to different chiralities = j; — j, are not independent. In contrast to
the left generators of the Poinesgfoup, the operatofst do not commute with the
chirality operator (which is the right generator of the Poieagmdup) and combine
2s + 1 representations of the Lorentz group into one irrep of the23de Sitter
groupSQq3, 2).

The current component® is positive definite for half-integer-spin parti-
cles and the energy density is positive definite for integer-spin particles (see
Appendix B).

In the rest frame, Eqgs. (5.110) have £ 1 positive- and 8 + 1 negative-
frequency solutions labeled by different spin projections [see (5.74)] and half-
integer-spin solutions with opposite frequency are characterized by opposite parity.
In the ultrarelativistic limit, two solutions with opposite sign pf correspond to
any of 5 + 1 of possible values of chirality [see (5.78)].

Thus, the system (5.110) describes a particle with unique spin and mass,
is invariant under parity transformation, and possesses 2() independent
components.

Let us briefly consider the problem of equivalence of the different RWE. In
the case of free fields, using the relation

[8,, 8] =0, (5.111)

one can establish the equivalence of wide class of RWE.
As established above, in the free case, the system (5.110) and the Bargmann—
Wigner equations (5.107), which both describe a particle by means of wave
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functions with componets transforming undexr21 irreps (1j2), j1 + j2 = S,

of the Lorentz group, are equivalent. However, the formulation (5.110) is more
general since, unlike the Bargmann—Wigner equations, it can be considered also
in the case of infinite-dimensional unitary representations of the Lorentz group, as
is done above with an analogous system in the @-dimensional case.

The above free equations for representatigas£) or (j1 j2) ® (j2 j1) can
be obtained as a consequence of the Bargmann-Wigner equations (Greiner, 1997;
Ohnuki, 1988) or the system (5.110) by excluding other components. In the general
case form # 0, one may express all components in terms of the components
corresponding to two chiralitiegA, where—s < A < s.

It is obvious that a coupling which is minimal for one system is not minimal
for another, “equivalent” system if one uses the relation (5.111) to prove this
equivalence in the free case. These equations will differ by terms proportional to
the commutator of covariant derivatived [, D,] = igF,,.

Therefore, when an interaction is introduced, the system of equations can
be found to be inconsistent if, when taking account of (5.111), some equations
are consequences of others. In particular, the spin-1 Bargmann-Wigner equations
with minimal electromagnetic coupling are inconsistent [for the proof, see, e.g.,
Buchbinder and Shavartsman (1993)], but the Duffin—-Kemmer and Proca equations
with minimal coupling, which are equivalent to them in the free case, are consistent
and characterized by causal solutions (Velo and Zwanziger, 1969).

Recently, different approaches have been considered to introduce interactions
for higher spin massive fields [see, in particular, Buchbiredex. (1999, 2000a),
Klishevich (2000), and Kruglov (1999)]. We hope the present approach will offer
new possibilities to describe interacting higher spin fields.

6. EQUATIONS FOR FIXED SPIN AND MASS: GENERAL FEATURES

Consider now the general properties of the obtained equations describing a
particle with unigue mas® > 0 and spirs in two dimensions,

p*f(x,0) = m*f(x,0), (6.1)
P, [" f(x,0) = msf(x, 0), (6.2)
in three dimensions,
P2 f(x,2) = m?f(x, 2), (6.3)
p,S"f(x. 2) = msf(x, 2), (6.4)

S.8f(x, 2 = S(S+ 1)f(x, 2), (6.5)
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and in four dimensions,

p2f(x, 2) = m?f(x, 2), (6.6)
p,.[" f(x,2) = msf(x, 2), (6.7)
8§08 F(x, 2) = 4S(S+ 2)F (X, 2). (6.8)

In the latter case, we suppose in additios +Sto avoid nontrivial spin and mass
spectrum.

In all dimensions, the first equation (condition of mass irreducibility) is the
eigenvalue equation for the Casimir operator of the Pomcmoup. The other
equations, although they seem similar, have different origins in even and odd
dimensions. This is related to the different role of space inversion.

In2 + 1 dimensions, the other equations (6.4)—(6.5) are eigenvalue equations
for the Casimir operator of the Poineagroup and the spin Lorentz subgroup.

In even dimensions, the Casimir operators of the Lorentz subgroup do not
commute with the space inversion operator, and space inversion combines two
equivalent representations of the proper Poiacaoup labeled by chiralities
into representations of the improper Poiregroup. If one rejects equations that
fix chirality [in 3 + 1 dimensions, this corresponds to the transition to the system
(5.50)—(5.52)], then in the rest frame, it is easy to see that there is a redundant
number of independent components. Thus, it is necessary to construct an equation
connecting the states with different chiralities, and a corresponding new set of
commuting operators. This can be done by using supplementary opeF#tors
which extend the Lorentz groupQ(D, 1) up to theSQ(D, 2) group with the
maximal compact subgroupQ(D) ® SO(2). The operatof? is the generator of
the compacs(2) subgroup.

The third equation of the system fixes the pow&rdt homogeneity of the
functions f (x, z) in z and therefore fixes the irrep of the Lorentz group i 2
dimensions or of the 3- 2 de Sitter group in 3 1 dimensions. [In & 1 dimen-
sions, there exists an analogous equaligh? f (x, 6) = s(s + 1) f(x, 6), but, in
fact, this equation defines the structurd vf]

The positive (half-) intege$ = s correspond to finite-dimensional nonunitary
irreps of the Lorentz (or de Sitter) group. Such irreps are realized in the space of
power % polynomials inz.

NegativeS = —s correspond to infinite-dimensional unitary irreps. The uni-
tary property allows one to combine the probability amplitude interpretation and
relativistic invariance [the desirability of this combination was stressed by Dirac
(1972b)]. Thus, the equations under consideration allow two approaches to the
description of the same spin by means of both finite-dimensional nonunitary and
infinite-dimensional unitary irreps.
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In 1+ 1 and 2+ 1 dimensions, there is the possibliity of the existence of
particles with fractional spin since the grol®§(1, 1) andSQ(2, 1) do not contain
a compact Abelian subgroup. However, the description of massive particles with
fractional spin can be given only in terms of the infinite-dimensional irreps of the
groupSQ2, 1). This is another reason to consider infinite-dimensional irreps.

Fixing the irrep of the Lorentz (or de Sitter) group with the help of the
third equation of the system, one can come to the usual multicomponent matrix
description by the separation of space and spin variablgsz) = > ¢n(2)¥n (),
whereg,(2), form the basis in the representation space of the Lorentz (or de Sitter)
group. Thus, depending on the choice of the solution of the third equation, the
second equation in the matrix representation is either a finite-component equation
or an infinite-component equation of Majorana type.

For fundamental spinor irreps, the action of differential operatsfd22 + 1
dimensionsand2“ in 1 + 1 and 3+ 1 dimensions in the space of functiohg, z)
on the Poinca‘group can be rewritten in terms of the action of corresponging
matrices on the functiong(x).

Differential operatord™ and matrices/*/2 obey the same commutation
relations

[, 1 =-iS", [§ 8]=-ie"rS§,.

In 3+ 1 dimensions, the operataré andS*’ obey the commutation relations of
generators of th&(Q(3, 2) group [see (5.62)].

Anticommutation relations for the operatcﬁs’é in2+1andl*inl1+1and
3+ 1 dimensions are analogous to the relationgfanatrices,

i Aw 1 A oA 1
[$.ST, = Sn [T = o0,
and are valid only for fundamental spinor irreps. This is a group-theoretic property
connected with the fact that for these irreps, the double action of lowering or raising
operators on any state gives zero as a result. [Notice that, besides the case of spinor
irreps of orthogonal groups, anticommutation relations also hold for fundamental
N-dimensional irreps a8 po(N) andSU(N) groups (Gitman and Shelepin, 1998).]

Fors = 1/2 ands = 1, the first equation of the system (condition of mass
irreducibility) is a consequence of (6.4) or (6.7). In the general case, the second
equation of the system describes multimass systaygs= ms Thus, fors > 1,
it is necessary to consider both equations.

Consider some characteristics of the equations associated with finite-
dimensional irreps of the Lorentz group. If we reject the first equation of the
system (i.e., the condition of mass irreducibility), then for the second equation
of the system, the componef? of the current vector is positive definite only
for s=1/2, and the energy density T [see (4.27)] is positive definite only
fors= 1. [The cases = 1 in 3+ 1 dimensions has been considered in detail in
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Gel'fandet al. (1963) and Ghose (1996)]. However, for the system as a whole,
the componeni® of the current vector is positive definite for any half-integer
spin, and the energy density is positive definite for any integer spin. In the rest
frame, half-integer spin solutions with the opposite sigrpgfaire characterized

by opposite parity.

For the case of infinite-component equations # 2 dimensions, the energy
is positive definite for any spin, arjd is positive or negative definite in accordance
with the sign of the charge.

Consideration of the field on the Poineafoup also relates to practical com-
putations for multicomponent equations. As noted in Ginzburg (1956), the general
investigation of Gel'fand—Yaglom equations “revealed a number of interesting fea-
tures, but. . the use of such equations (or more accurately, systems of a large or
infinite number of equations) for any practical computations is not possible.” In
the present approach, due to the use of spin differential operators instead of finite-
or infinite-dimensional matrices, from the technical point of view, there is no es-
sential distinction in the consideration of the equations associated with various
finite-dimensional and infinite-dimensional representations of the Lorentz group.
Therefore, the present approach can work with higher spins and positive-energy
wave equations. For example, the use of spin variabhess allowed us to obtain
an explicit compact form of general plane wave solutions for any spin (including
fractional spin in 2+ 1 dimensions).

Notice that unlike the equations for particles with unique mass and spin, in the
general case, RWE with mass and spin spectrum can either connect several scalar
functions f (x, ) (e.g., general Gel'fand—Yaglom equations and, in particular,
Bhabha equations) or describe objects with composite spin, which correspond
to the functionsf (x, zq, ..., zn)) of one set of space-time coordinatesand
several sets of spin coordinate.qg., lvanenko—Landau-aler or Dirac—kahler
equation).

7. CONCLUSION

In this paper, we elaborated a general scheme of analysis for fields on the
Poincag group and applied it in two-, three-, and four-dimensional cases.

Considering the left GRR of the Poineagroup, we introduced the scalar
field f(x, z) on the group, wher& are coordinates in Minkowski space and
are coordinates on the Lorentz group. The connection between the left GRR and
the scalar field allows us to use the powerful mathematical method of harmonic
analysis on a group, at the same time supporting physical considerations.

Consideration of the function&(x, z) guarantees the possibility to describe
arbitrary spin particles because any irrep of a group is equivalent to some subrep-
resentation of GRR. Thus, we deal with unique field containing all masses and
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spins. As a consequence, we have the following points:

1. The explicit form of spin projection operators does not depend on the spin
value. These operators are differential operators with respect to

2. For this scalar field and thus for arbitrary spin, discrete transformations
C, P, T are defined as the automorphisms of the Pomgaoup.

3. RWE arise under the classification of the functions on the Pargraxip
by eigenvalues of invariant operators and have the same form for arbitrary
spin.

The switch to the usual multicomponent description by functigg() cor-
responds to a separation of the space-time and spin varidtilesz) = > ¢n(2)

Yn(X), wheregn(2) andy,(x) transform under contragradient representations of
the Lorentz group. The use of the transformation rules aunder automorphisms
enables us to deduce the transformation ruleg.¢k) underC, P, T without any
consideration of the specific form of equations of motion.

We showed that in even dimensions, the consistent consideration of RWE
invariant with respect to space reflection requires the use of generators of the group
SQD, 2), which is an extension of the corresponding Lorentz gi8G(D, 1).

We gave the interpretation of the right generators belonging to the complete
set of commuting operators on the Poiregroup. This interpretation is similar to
the Wigner and Casimir interpretation of right generators of the rotation group in
the nonrelativistic theory (Biedenharm and Louck, 1981; Wigner, 1959). As in the
nonrelativistic case, right generators define quantum numbers that do not depend
onthe choice ofthe laboratory frame. In particular, in the-(B)-dimensional case,
three right generators of the Poineagfoup define Lorentz characteristigs jo,
and chirality, and the fourth right generator distinguishes particles and antiparticles.

Using complete sets of the commuting operators on the group, we classified
scalar functionsf (x, z). As one of the results of this classification, we repro-
duced essentially all known finite-component RWE. Moreover, such an approach
allowed us to consider alternative possibilities that had not been formulated be-
fore. In particular, in the (3 1)-dimensional case we wrote general subsidiary
conditions (5.43) corresponding$oZ j;1 + j2. Onthe other hand, instead of sub-
sidiary conditions, one can consider functions of momengpuamd spin variables
z with invariant constraints (5.39). We showed that the set of operators related to
higher spin equations in-8 1 dimensions obeys commutation relationsq8, 3)
algebra, which coincide with the algebraeinatrices for spin 22. But unlike the
latter case, the set of operators for higher spin equations is not closed with respect
to anticommutation.

In the framework of the classification of scalar functions, we also get pos-
itive energy wave equations allowing a probability amplitude interpretation and
associated with infinite-dimensional unitary representations of the Lorentz group.
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Along with the alternative description of integer- or half-integer-spin fields, just
these equations ensure description of fractional spin fields+inlland 2+ 1
dimensions.

The consideration of the scalar field on the Poiragdup allowed us both
to obtain new results and to reproduce the main results of RWE theory, which
earlier were obtained by means of different approaches. Thus, a general approach
to the construction of different types of RWE is established. One also can consider
this as an alternative method to construct a detailed theory of the Peigcarp
representations.

The approach under consideration can be directly applied to higher dimen-
sional cases and possibly be generalized to other space-time symmetry groups,
such as de Sitter and conformal groups.

APPENDIX A: BASES OF 2 4 1 LORENTZ GROUP
REPRESENTATIONS AND S$* MATRICES

Spin projection operato&’ acting in the space of the functiofi§x, z) of x =
(x*) and two complexvariabled = z,, 22 = —z), |z1)?> — ||? = |2?| — |2} =1
have the form

A 1 * %

S = S@" =2y 9y, 2= (2222, 9, = (0/07' 9/02)", (A1)
where y# = (03,102, —i01). For z= (z1 2,), the relationS* = —1(zp"3,— z
y*9,) is valid.

The polynomials of the powelSin z, which correspond to finite-dimensional
irreps T of the 2+ 1 Lorentz group, can be written in the form

2S
TS fs(x,2) =) ¢"(@¥n(X),
n=0

¢"(2) = (Che)’@S "), L=5-n, (A2)

wheres? is an eigenvalue d%o, andCJ are binomial coefficients. The quasipoly-
nomials of the power 8 < —1, which correspond to infinite-dimensional unitary
irrepsTSjE of the 2+ 1 Lorentz group, can be written in the form

TE: fs(x,2) = ) ¢"(@vn(X),
n=0
¢n(z) — (Cgs)l/z(ZZ)ZS—n(zl)n’ S0 — —S+ n,

Ts: fs(x.2) =) ¢"@yn(X). (A3)
n=0
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¢n(Z) — (Cgs)l/z(éZ)ZS—n(;i)n’ SO —S—n,

» _ ((=1)'T(n—29)\"?
CZS_( n! I'(—29) ) '

There is a correspondence between the action of differential opefitors
the functionsf (x, z) = ¢(2)y (x) and the multiplication of matrice8" by columns
¥(x) composed ofir,(x), é“f(x, 2) = (2S¢ (x). For the finite-dimensional
representations?, we have &) = &, (9 = -5,

(SO = 6w (S—n). n=0.1....2S
(SHh = —ii (8n.n+1v/(2S— N+ )N + 8ns1.ny/(2S— N)(N + 1)),
(S = 51/ @E 1+ DN — b1/ @S- M4 ). (AD)

The matrices* satisfy the condition$*)" = I'S*I", wherel" is a diagonal matrix,
(D) = (—=1)"8ny. The substitutiore —7in (A2) changes only signs & and
S?. For representationks” of discrete positive series, we ha@{’ = ,

(S = §,v(=S+n), n=0,1,2,...,
, 1
(S = =5 (nns1v/ (1= 1= 290+ o0/ (1 - 29)(n + 1),
C
() = E((sn_n/ﬂ,/(n —1-29n = ns1nv/(N—29)(N+1)). (A5)

For Tg matrices,S' has the same form, where@% S* change only their signs.

The case of representations of principal series which are not bounded by the
highest (lowest) weight, was considered in Gitman and Shelepin (1997).

For representations, which correspond to finite-dimensional iféphe de-
composition (A2) can be written in terms of symmetric spin-tengQrs.,,.(X) =

fS(Xs Z) = I/fou---otzs(x)zoq S 2, (A6)

Comparing the decompositions (A2) and (A6), we obtain the relation

(CSS)l/an(X) = wuaj(x) (A7)

25-n n
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APPENDIX B: BASES OF 3+ 2 DE SITTER AND 3 + 1 LORENTZ
GROUP REPRESENTATIONS AND I'* MATRICES

Consider polynomials of elements of the DimaspinorZp = (2%, Zd). Any
polynomial of power & can be decomposed in the basis 082 3)!/[6(29)!]
monomials

AP LD, a+b+c+d=2S

We can write 16 operators, which conserve the power of the polynomial:

g 1 v —uvyo X ;
s = E((U“ )5z 9p + (o )% %) —c.c, (B1)

~ - - 1, . :
' = ]fLZ + szi — C.C.= E(O'lwwt Zd aa + Gfdz‘x@“) — C.C, (BZ)

*

M =i(Vf— V) +cc.= IE(EW“ Ve — 0l Z"3%) +cc,  (B3)

Zy

A 1 €
r°= E(z"aCY —z,3%) +c.c, (B4)

~ o 1 -
T=-&= @+ 50 -cc, (85)

whered, = 9/92%, 3% = 3/9 z,,
i - oG i :
(c"") = _Z(a“E” — o', (a““)‘g = —Z(a“a" —aa” %, (B6)
and c.c. is the complex conjugate term *corresponding to the action in the space of
polynomials of the elements &, = (2%, z,). The operatof commutes with the
other 15 operators and defines the power of the polynomials for functions of

Zp andZp, respectively. Operators (B1)—(B4) obey the commutation relations of
sa(3, 3) ~ sl(4, R) algebra,

[, 8" =0, [[® "] =il" [[®["=-il",
[t 0 =—-i8", [§" 1 =i@D" — "),
[, B = i F®, (B7)

[see also (5.58), (5.59)]. Using the notatidé = I, 8 = ', §* = 'S, we
can rewrite the commutation relations in the form (5.62), whete= 144 = noo =
1, n11 = n22 = n33 = —1. However, for unitqrx repre§entations of the Poircar’
group, all the generators and, in particul&, = iI"® (for functions of Zp
and Z, respectively), are Hermitian. Thus, setti§d' =il $* = i[5, for
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these representations, it is natural to consider an algaifda2) ~ su(2, 2) of
Hermititan operators.

Supplementing the generatd$s’ of the Lorentz group by four operatorg
(or I'#), we obtain the algebra of the82 de Sitter groufsQ(3, 2). Generators in
finite-dimensional representations®®(3, 2) obey the relations°" = [0, [kt =
-1k,

The linear functions of, f (X, z) = Zp¥p(x), correspond to the four-dimen-
sional bispinor representation. In the space of coluig&), the operators act as
matrices

S o2, T 2, T5 5952, T Siyty®2, T - 1/2.
(B8)
In accordance with the general theory, Dirac matrices and spin-1 Duffin—-Kemmer
matrices obey commutation relationssi{(3, 3) algebra (Hepner, 1962; Paty”
1995).
Using (2.61)—(2.63), we get the following for the action of the discrete trans-
formations on the operators (B1)-(B5):

C ~1 -1 11 -
P, T/ (=1fotle (=10 (—1f —1 1
Tsen  —(—1potio  (—1po (=1 —1 -1

g P pops
1 (B9)

It is possible to construct two equations linearfii for the scalar functions
f (x, z) which are invariant under the proper Poiregroup

(f)ﬂf‘# - K)f(X, Z) = 07 (ﬁuﬁﬂ - K)f(X, Z) = O’ (BlO)

but in accordance with (89) only the operatp,gl‘“ is invariant under space
reflection; the operatop, I " changes the sign. Thus, only the first equation is
invariant under space reflection.

Operatord™® and ﬁﬂf“ commute with all the left generators of the Poirear”
group, but do not commute with each othéfs[p, '] = i P, . Therefore, the
chirality of a massive particle described by the equatmﬁ(ﬂ m9 f(x, z) =
is uncertain. The operatd’r commutes both with all left generators of the Poneacar
group and with operatois*; therefore, one may relate to this operator a conserved
guantum number changing sign under charge conjugation.

On the polynomials of four complex variableg Zy one can realize symmet-
ric irrepsTpas00) Of SL(4, R) ~ SQ3, 3). These irreps are a symmetric part & 2
times the direct product of fundamental four-dimensional irfggg; and remain
irreducible after the reduction on the subgrdsX3, 2), Tpsoo) — Tpso). Here
we use notation different from Bhabha (1945)S[4] corresponds toj(+ S Sin
the notation of Bhabha (1945).
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We will consider two bases of the finite-dimensional irfggo; of SO, 2),
namely, bases consisting of eigenfunctions of the operator I'°. The first basis
corresponds to the chiral representation,

G2, B) = NYZ(ZYim(Z2ylmms g Mg, (B11)
wheres = ji + j2, A = j1 — jo, my andm, are eigenvalues of the operatdvi
and Nz, which are linear combinations @& and Bz [see (5.13)],N = (2s)!/
[(j2 4+ my)!(j1 — my)!(j2 + my)!(j» — my)!]. Consisting of eigenfunctions of the

[0 basis,

Pz, 2) = (N2 + 7)™ (2 + )0 ™(2'— 7)™ (22— z)o ™,

(B12)
where s=k; +k, and N’ = (2s)!/[(k1 + n1)!(ks — n1)!(kz 4+ n2)!(ka — n2)1],
corresponds fas = 1/2 tothe Dirac representation. The functions (B12) are eigen-
functions of the operatofe?, I'°, S;with eigenvaluek; — ko, i (N1 — n,)/2, (Ng +
n,)/2, respectively. For fixed, we have

o *
f(x.22)= Y D UPm0ee 2)
jl+j2=$ mz,mp
*
= 2 P U0 D) (B13)
1+ko=s N1,N2

Below, we will use the basis (B12). According to (5.74), in the rest frame for
a particle described by the system (5.71)—(5.73), we have

f(x.2.2) = ¥y ()pl (2. 2) + ¥~ (s (2. 2)

= CLE™ Pl 4(2. 2) + Coe ™ 9 (2. 2),
’ ' (B14)

;_53(27 2) — (Zl + 21 )S+s3 (22 + 22 )5—33’

¢S_33(Zr 2) — (Zl _ Z]_ )S-ﬁ-S3 (22 _ 22 )5—53.
The equation K)Mlq“ —smf(x, z, i) = 0 has the matrix form

(B, I —smy(x) =0, (B15)

where(x) is a column. It is convenient to enumerate the basis elements (B12)
[and the elements of the columi(x)] in order of decrease d§; — k, = s, s —
1,..., —s. MatricesI'* obey the relationg'® = I'%, Tkt = —'%, Matrix "0 is
diagonal and has the elemeiiis— ky. MatricesI'* andI'® are skew-symmetric
real, andI'? is symmetric imaginary. According to (B2), the matrides have
nonzero elements only in blocks corresponding to the transitignkf) — (k; =

1/2, k, 7 1/2). Using this property, it is easy to see that the diagonal mBEtwith
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the elements{1)*2 commutes witH™® and anticommutes with¥, I'*f = I'T#T.
This allows one to rewrite the Hermitian-conjugate equatiogp, I'*" + sn) =
0 in the form

J)(p, " +sm =0, ¥ =y'T, (B16)

and to define the invariant scalar product in the space of columﬁsb_az)l/f(x)
d3x. As a consequence of (B15) and (B16), the continuity equation holds,

a/tjﬂ =0, jM = JFH¢~

Now the question concerning the positive definiteness of the current vector
componentj® and the energy density may be consider similarly to the ©-
dimensional case (see Section 3). For half-integer-spin particles described by the
system (5.71)—(5.73), the charge dengityis positive definite, since in the rest
frame [see (B14)]j° = ¢y T T% = s(|y*(X)| + [~ (X)|) > 0. The energy den-
sity [defined in terms of the energy-momentum tensor (4.27)] and the scalar prod-
uct ¢y are indefinite since in the rest frame, they are proportionalto(x)| —
|v~(X)|. For integer-spin particles, the energy density is positive definite, and the
scalar product angl are indefinite.

Consider discrete transformations in terms of the colughfg. According
to (5.8), under space reflectiag};’ *(z. 7) —> (—1 (2, 7). Whence, taking
into accountf (x, z, 2) — f(x,Z) = ¢(z E)W(x’), we get

U(¥) 5 (“1)BTy(X), whereX = (x°, —x¥). (B17)

According to (2.63), under charge conjugatioff?(z, z) — ¢¢'(z, 2). Taking
into account thawﬂllgz(i 2) and (-1)°M g2 (2, ) have the same transfor-

mation rule, we get

*namy

P () S (— L (x). (B18)

In particular, fors = 1/2, using the relatiorf (X, z, 2) = ZpV(x), we get¥(x) £
yOU(X), ¥(x) S We(x) = CJT(X), whereC is the matrix with elements-io,

on secondary diagonal, = iy2y°. The transformation properties of the bilinear
YTy, T3y, ¢ Ty underC, P, T coincide with those of the corresponding
operators [see (B9)].
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