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In this paper, starting from a pure group-theoretic point of view, we develop an ap-
proach to describing particles with different spins in the framework of a theory of scalar
fields on the Poincar´e group. Such fields can be considered as generating functions
for conventional spin-tensor fields. The case of two, three, and four dimensions are
elaborated in detail. Discrete transformationsC, P, T are defined for the scalar fields
as automorphisms of the Poincar´e group. We classify the scalar functions, and ob-
tain relativistic wave equations for particles with definite spin and mass. There exist
two different types of scalar functions (which describe the same mass and spin), one
related to a finite-dimensional nonunitary representation and the other to an infinite-
dimensional unitary representation of the Lorentz subgroup. This allows us to derive
both usual finite-component wave equations for spin-tensor fields and positive-energy,
infinite-component wave equations.

1. INTRODUCTION

Traditionally in field theory, particles with different spins are described by
multicomponent spin-tensor fields on Minkowski space. However, it is possible to
use for this purpose scalar functions as well, which depend on both Minkowski
space coordinates and on continuous bosonic variables corresponding to spin de-
grees of freedom. Such fields were introduced (Bargmann and Wigner, 1948;
Ginzburg and Tamm, 1947; Shirokov, 1951; Yukawa, 1950) in connection with
the problem of constructing relativistic wave equations (RWE). Fields of this type
may be treated as fields on homogeneous spaces of the Poincar´e group. A sys-
tematic development of this point of view was given by Finkelstein (1955). He
also gave a classification and explicit constructions of homogeneous spaces of
the Poincar´e group, which contain Minkowski space. The next logical step was
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taken by Lurçat (1964), who suggested constructing quantum field theory on the
Poincaré group. One of the motivations was to give a dynamical role to the spin.
These ideas were developed in Arod´z (1976), Bacry and Kihlberg (1969), Boyer
and Fleming (1974), Drechsler (1997), Kihlberg (1970), and Toller (1978, 1996).
For example, different homogeneous spaces were described, as well as possibilities
to introduce interactions in spin phase space and to construct Lagrangian formu-
lations. Bacry and Kihlberg (1969) concluded that eight is the lowest dimension
of a homogeneous space suitable for a description of both half-integer and integer
spins. However, no convincing physical motivation for the choice of homogeneous
spaces was presented, and the interpretation of additional degrees of freedom and
of corresponding quantum numbers remained an open problem.

In this paper, starting from a pure group-theoretic point of view, we develop
a regular approach to describing particles with different spins in the framework
of a theory of scalar fields on the Poincar´e group. Such fields can be consid-
ered as generating functions for conventional spin-tensor fields. In this language,
the problem of constructing RWE of different types is formulated from a unique
position.

We use scalar fields on the proper Poincar´e group, that is, fields on the
10-dimensional manifold; this manifold is a direct product of Minkowski space and
of the manifold of the Lorentz subgroup. These fields arise in our constructions in
the course of studying a generalized regular representation (GRR). This provides
the possibility to analyze all the representations of the Poincar´e group. Study of
a GRR implies the use of harmonic analysis (Barut and Raczka, 1977; Vilenkin,
1968; Vilenkin and Klimyk, 1991; Zhelobenko and Schtern, 1983). In a sense, this
method is an alternative to that of induced representations suggested by Wigner
(1939) (also see Barut and Raczka, 1977; Kim and Noz, 1986; Mackey, 1968;
Ohnuki, 1988). It turns out that the fields on the Poincar´e group can be considered
as generating functions for the usual spin-tensor fields on Minkowski space, and
thus we naturally obtain all results for the latter fields. However, sometimes it is
more convenient to formulate properties and equations for spin-tensor fields in
terms of the generating functions. Moreover, the problem of constructing RWE
is very natural in the language of the scalar fields on the group. We show that
this problem can be formulated as a problem of classifying different scalar fields.
For this purpose, in accordance with the general theory of harmonic analysis, we
consider various sets of commuting operators and identify constructing RWE with
eigenvalue problems for these operators. We define discrete transformations for
the scalar fields using automorphisms of the proper Poincar´e group. The space of
scalar fields on the group turns out to be closed with respect to the discrete transfor-
mations. The latter transformations are of fundamental importance for constructing
RWE and for their analysis. Consideration of the discrete transformations helps us
to give the right physical interpretation for quantum numbers that appear in course
of classifying the scalar fields.
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The paper is organized as follows. In Section 2, we introduce the basic objects
of study, namely, scalar fieldsf (x, z). The scalar fields depend onx, which are
coordinates on Minkowski space, and onz, which are coordinates on the Lorentz
subgroup. The complex coordinateszdescribe spin degrees of freedom. It is shown
that these fields are generating functions for the usual spin-tensor fields. Classifying
the scalar fields with the help of various sets of commuting operators on the group,
we get a description of irreps of the group. We formulate a general scheme of
constructing RWE in this language in any number of dimensions. We introduce
discrete transformations in the space of the scalar functions, and we relate these
transformations to automorphisms of the proper Poincar´e group.

In Section 3, we apply the above general scheme to a detailed study of scalar
fields on two-dimensional Poincar´e and Euclidean groups. In particular, we con-
struct RWE and analyze their solutions.

The three-dimensional case of Poincar´e and Euclidean groups is considered in
Section 4. Besides finite-component equations, we also construct positive-energy
RWE associated with unitary infinite-dimensional irreps of the 2+ 1 Lorentz
group. These equations, in particular, describe particles with fractional spins.

In Section 5, we study scalar fields on the 3+ 1 proper Poincar´e group. The
connection of the present consideration with other approaches to RWE theory is
considered in detail. In particular, we consider equations with subsidiary condi-
tions. General first-order Gel’fand–Yaglom equations (including Bhabha equa-
tions), Dirac–Fierz–Pauli equations, and Rarita–Schwinger equations arise in the
present consideration as well. This gives a basis for comparison of properties of
various RWE.

Classifying scalar functions in two, three, and four dimensions, we obtain
equations describing fields with fixed mass and spin. In Section 6, we consider the
general features of these equations.

The construction of RWE is elaborated in detail only for the massive case.
We plan to discuss the massless case in a later article.

2. FIELDS ON THE PROPER POINCARÉ GROUP
AND SPIN DESCRIPTION

2.1. Parametrization of the Poincaré Group

Consider Poincar´e group transformations

x′ν = 3ν
µxµ + aν (2.1)

of coordinatesx = (xµ, µ = 0, . . . , D) in d = (D + 1)-dimensional Minkowski
space,ds2 = ηµν dxµ dxν, ηµν = diag(1,−1, . . . ,−1). The matrices3 define ro-
tations in Minkovski space and belong to the vector representation of theO(D, 1)
group. We are also going to consider theD-dimensional Euclidean case in which
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ds2 = ηik dxi dxk andηik = diag(1, 1, . . . ,1), i, k = 1, . . . , D. Here the matrices
3 belong to the vector representation of theO(D) group.

The transformations (2.1), which can be obtained continuously from the iden-
tity, form the proper Poincar´e groupM0(D, 1) with the elementsg = (a,3). Cor-
responding homogeneous transformations (a = 0) form the proper Lorentz group
SO0(D, 1). In the Euclidean case, we deal withM0(D) andSO(D). The composi-
tion law and the inverse element of these groups have the form

(a2,32)(a1,31) = (a2+32a1,3231), g−1 = (−3−1a,3−1). (2.2)

Thus, the groupsM0(D, 1) andM0(D) are semidirect products

M0(D, 1)= T(d)×) SO0(D, 1), M0(D) = T(D)×) SO(D),

whereT(d) is thed-dimensional translation group.
There exists a one-to-one correspondence between the vectorsx and 2× 2

Hermitian matricesX in pseudo-Euclidean spaces of two, three, and four
dimensions,4

x↔ X, X = xµσµ. (2.3)

Namely,

d = 3+ 1: X =
(

x0+ x3 x1− ix2

x1+ ix2 x0− x3

)
, (2.4)

d = 2+ 1: X =
(

x0 x1− ix2

x1+ ix2 x0

)
, (2.5)

d = 1+ 1: X =
(

x0 x1

x1 x0

)
. (2.6)

In all the above cases,

detX = ηµνxµxν, xµ = 1

2
Tr(Xσ̄ µ). (2.7)

In Euclidean spaces of two and three dimensions, a similar correspondence has
the form

D = 3: X =
(

x3 x1− i x2

x1+ i x2 −x3

)
, (2.8)

D = 2: X =
(

x2 x1

x1 −x2

)
. (2.9)

4 We use two sets of 2× 2 matricesσµ = (σ0, σk) andσ̄µ = (σ0,−σk),

σ0 =
(

1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
1 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.



P1: FMV/FRS/FEA

International Journal of Theoretical Physics [ijtp] PP048-292330 February 1, 2001 10:54 Style file version Nov. 19th, 1999

Fields on the Poincaré Group 607

If x is subjected to a transformation (2.1), thenX transforms as follows (see,
e.g., Vilenkin, 1968):

X′ = UXU† + A, (2.10)

whereA = aµσµ andU are 2× 2 complex matrices obeying the conditions

σν3
ν
µ = UσµU †. (2.11)

Equation (2.11) relates the matrices3 andU . There are manyU that correspond
to the same3. We may fix this arbitrariness by imposing the condition

detU = 1, (2.12)

which does not contradict the relation detU = eiφ , which follows from (2.11).
However, there is no one-to-one correspondence between3 andU , namely two
matrices (U,−U ) correspond to one3. Considering bothU and−U as rep-
resentatives for3, we in fact go over fromSO0(D, 1) to its double covering
group Spin(D, 1), or, in the Euclidean case, fromSO(D) to its double covering
group Spin(D). In the dimensions under consideration, the groups Spin(D, 1) and
Spin(D) are isomorphic to the following ones5:

d = 3+ 1: U ∈ SL(2,C), U =
(

u1
1 u1

2

u2
1 u2

2

)
, u1

1u2
2− u2

1u1
2 = 1, (2.13)

d = 2+ 1: U ∈ SU(1, 1), U =
(

u1 u2
∗
u2

∗
u1

)
, |u1|2− |u2|2 = 1, (2.14)

D = 3: U ∈ SU(2), U =
(

u1 u2

− ∗u2
∗
u1

)
, |u1|2+ |u2|2 = 1, (2.15)

d = 1+ 1: U ∈ SO(1, 1), U =
(

cosh
(
φ

2

)
sinh

(
φ

2

)
sinh

(
φ

2

)
cosh

(
φ

2

)) , (2.16)

d = 2: U ∈ SO(2), U =
(

cos
(
φ

2

)
sin
(
φ

2

)
−sin

(
φ

2

)
cos
(
φ

2

)) , (2.17)

Considering nonhomogeneous transformations and retaining both elementsU and
−U , we go over from the groupsM0(D, 1) andM0(D) to the groups

M(D, 1)= T(d) ×) Spin(D, 1) and M(D) = T(D) ×) Spin(D)

respectively. This allows us to avoid double-valued representations for half-integer
spins. Thus, there exists a one-to-one correspondence between the elementsg of

5 We denote the complex conjugation by an asterisk atop the respective quantities.
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the groupsM(D, 1),M(D), and two 2× 2 matrices,g↔ (A,U ). The first one,
A, corresponds to translations and the second one,U , corresponds to rotations.
Equation (2.10) describes the action ofM(D, 1) on Minkowski space [the latter
is a coset spaceM(D, 1)/Spin(D, 1)]. As a consequence of (2.10), we obtain the
composition law and the inverse element of the groupsM(D, 1),M(D):

(A2,U2)(A1,U1) = (U2A1U
†
2 + A2,U2U1), g−1 = (−U−1A(U−1)†,U−1).

(2.18)

The matricesU in the dimensions under consideration satisfy the following iden-
tities:

U ∈ SL(2,C): σ2Uσ2 = (U T )−1; (2.19)

U ∈ SU(1, 1): σ1Uσ1 =
∗
U , σ2Uσ2 = (U T )−1, σ3Uσ3 = (U †)−1, (2.20)

U ∈ SU(2): σ2Uσ2 = (U T )−1 =
∗
U. (2.21)

An equivalent picture arise in terms of the matricesX̄ = xµσ̄µ. Using the
relation X̄ = σ2XTσ2, the transformation law forX, in (2.10), and the identity
(2.19), one gets

X̄′ = (U †)−1X̄U−1+ Ā. (2.22)

Thus, X̄ are transformed by means of the elements (Ā, (U †)−1). The relation
(A,U )→ (Ā, (U †)−1) defines an automorphism of the Poincar´e groupM(D, 1).
In the Euclidean case, the matricesU are unitary, and the latter relation is reduced
to (A,U )→ (−A,U ).

The representation of the Poincar´e transformations in the form (2.10) is
closely related to a representation of finite rotations inRd in terms of the Clifford
algebra. In higher dimensions, the transformation law has the same form, where
A is a vector element andU corresponds to an invertible element (spinor element)
of the Clifford algebra (Benn and Tucker, 1988). The representation of the finite
transformations in the form (2.10) can be useful for spin description by means of
Grassmannian variablesξ , sinceξ and∂ξ give a realization of the Clifford algebra
(Berezin, 1966).

2.2. Regular Representation and Scalar Functions on the Group

It is well known (Vilenkin, 1968; Vilenkin and Klimyk; Zhelobenko and
Schtern, 1983) that any irrep of a groupG is contained (up to the equivalence)
in a decomposition of a GRR. Thus, the study of GRR is an effective method for
the analysis of irreps of the group. Consider, first, the left GRRTL(g), which is
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defined in the space of functionsf (g0), g0 ∈ G, on the group as

TL(g) f (g0) = f ′(g0) = f (g−1g0), g ∈ G. (2.23)

As a consequence of the relation (2.23), we can write

f ′(g′0) = f (g0), g′0 = gg0. (2.24)

Let G be the groupM(3, 1), and we use the parametrization of its elements by
two 2× 2 matrices [one Hermitian and another one fromSL(2,C)], as described
in the previous section. With such a parametrization, we use the notations

g↔ (A,U ), g0↔ (X, Z), (2.25)

where A and X are 2× 2 Hermitian matrices andU, Z ∈ SL(2,C). The map
g0↔ (X, Z) creates the correspondence

g0↔ (x, z, z), wherex = (xµ), z= (zα), z= (zα),

µ = 0, 1, 2, 3, α = 1, 2, z1z2− z2z1 = 1, (2.26)

by virtue of the relations

X = xµσµ, Z =
(

z1 z1
z2 z2

)
∈ SL(2,C). (2.27)

On the other hand, we have the correspondenceg′0↔ (x′, z′, z′),

g′0 = gg0↔ (X′, Z′) = (A,U )(X, Z) = (UXU+ + A,UZ)↔ (x′, z′, z′),

x′µσµ = X′ = U XU+ + A =⇒
x′µ = (30)µν xν + aµ,3← U ∈ SL(2,C), (2.28)(

z′1 z′1
z′2 z′2

)
= Z′ = UZ=⇒

z′α = Uβ
α zβ, z′α = Uβ

α zβ, U = (Uβ
α

)
, z′1z′2− z′2z′1 = 1. (2.29)

Then the relation (2.24) takes the form

f ′(x′, z′, z′) = f (x, z, z), (2.30)

x′µ = (30)µν xν + aµ, 3← U ∈ SL(2,C), (2.31)

z′α = Uβ
α zβ, z′α = Uβ

α zβ, z1z2− z2z1 = z′1z′2− z′2z′1 = 1. (2.32)

The relations (2.30)–(2.32) admit a remarkable interpretation. We may treat
x andx′ in these relations as position coordinates in Minkowski space (in different
Lorentz reference frames) related by proper Poincar´e transformations, and the sets
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(z, z) and (z, z′) may be treated as spin coordinates in these Lorentz frames. They
are transformed according to the formulas (2.32). Carrying the two-dimensional
spinor representation of the Lorentz group, the variablesz and z are invariant
under translations, as one can expect for spin degrees of freedom. Thus, we may
treat sets (x, z, z) as points in a position–spin space with the transformation law
(2.31), (2.32) under the change from one Lorentz reference frame to another. In
this case, Eq. (2.30)–(2.32) represent the transformation law for scalar functions
on the position–spin space.

On the other hand, as we have seen, the sets (x, z, z) are in one-to-one corre-
spondence to the groupM(3, 1) elements. Thus, the functionsf (x, z, z) are still
functions on this group. That is why we often call them scalar functions on the group
as well, remembering that the term “scalar” came from the above interpretation.

Remember now that different functions of such type correspond to different
representations of the groupM(3, 1). Thus, the problem of classification of all
irreps of this group is reduced to the problem of a classification of all scalar func-
tions on position–spin space. However, for the purposes of such a classification, it
is natural to restrict ourselves to scalar functions that are analytic both inz, zand in∗
z,
∗
z (or, simply speaking, that are differentiable with respect to these arguments).

Such functions are denoted byf (x, z, z,
∗
z,
∗
z) = f (x, z), z= (z, z,

∗
z,
∗
z).

Consider the right GRRTR(g). This representation is defined in the space of
functions f (g0), g0 ∈ G, as

TR(g) f (g0) = f ′(g0) = f (g0g), g ∈ G, (2.33)

As a consequence of the relation (2.33), we can write

f ′(g′0) = f (g0), g′0 = g0g−1. (2.34)

In the case of the proper Poincar´e group, the right transformations act ong0↔
(X, Z) according to the formula

g′0 = g0g−1↔ (X′, Z′) = (X + Z−1A(Z−1)†, ZU−1). (2.35)

Hencex′µ = xµ + Lµν aν , where the matrixL depends onz, σνLνµ = Z−1σµ(Z−1)†.
The transformations forx, z do not admit an interpretation similar to the left GRR
case. In particular, the transformation law forx does not look like a Lorentz
transformation. On the other hand, the study of the right GRR is useful for the
classification of the Poincar´e group irreps since the generators of the right GRR
are used to construct complete sets of commuting operators on the group.
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2.3. Generators of Generalized Regular Representations

Generators of the left GRR correspond to translations and rotations. They can
be written as

p̂µ = −i ∂/∂xµ, Ĵµν = L̂µν + Ŝµν, (2.36)

whereL̂µν = i (xµ∂ν − xν∂µ) are angular momentum operators andŜµν are spin
operators depending onz and∂/∂z. An explicit form of the spin operators is given
in Appendix A.

The algebra of the generators (2.36) has the form

[ p̂µ, p̂ν ] = 0, [ Ĵµν, p̂ρ ] = i (ηνρ p̂µ − ηµρ p̂ν),

[ Ĵµν, Ĵρσ ] = iηνρ Ĵµσ − iηµρ Ĵνσ − iηνσ Ĵµρ + iηµσ Ĵνρ. (2.37)

In the space of Fourier transforms

ϕ(p, z) = (2π )−d/2
∫

f (x, z)eipx dx (2.38)

the left GRR acts as [one has to use (2.23)]

TL(g)ϕ(p, z) = eiap′ϕ(p′, g−1z), p′ = g−1 p↔ P′ = U−1P(U−1)†,

P = pµσ
µ. (2.39)

One can see that detZ and detP = p2 are invariant under the transformations6

(2.39) and thatp2 is an eigenvalue of the Casimir operatorp̂2.
For the groupsM(D) there are two types of representations, depending on

p2: (1) p2 6= 0, (2) p2 = 0; then allpi = 0, and irreps are labeled by eigenvalues
of Casimir operators of the rotation subgroup.

For the groupsM(D, 1), there are four types of representations, depending on
the eigenvaluesm2 of the Casimir operator̂p2: (1) m2 > 0, (2) m2 < 0 (tachyon),
(3) m2 = 0, p0 6= 0 (massless particle), (4)m2 = p0 = 0; irreps are labeled by
eigenvalues of the Casimir operators of the Lorentz subgroup, and the correspond-
ing functions do not depend onx.

For decomposing the left GRR, we construct a complete set of commuting
operators in the space of functions on the group. Together with the Casimir opera-
tors, some functions of right generators7 may be included in such a set. Therefore,
it is necessary to know the explicit form of right generators. As a consequence of

6p2 = ηµν pµpν . Since we do not usep with the upper indics, this does no lead to a misunderstanding.
7 The physical meaning of the right generators is not so transparent. However, one can remember
that the right generators ofSO(3) in the nonrelativistic rotator theory are interpreted as operators of
angular momentum in a rotating body-fixed reference frame (Biedenharm and Lauck, 1981; Landau
and Lifschitz, 1977; Wigner, 1959).
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the formulas

TR(g) f (x, z) = f (xg, zg), xg↔ X + ZAZ†, zg↔ ZU, (2.40)

TR(g)ϕ(p, z) = e−ia′ pϕ(p, zg), a′ ↔ A′ = ZAZ† (2.41)

one obtains

p̂R
µ = −(L−1(z))νµpν, Ĵ

R
µν = Ŝ

R
µν, (2.42)

whereL ∈ SO(D, 1) [or L ∈ SO(D, 1) in the Euclidean case]. The operators of
right translations can also be written in the form̂PR = −Z−1P̂(Z−1)†; operators
Ŝµν andŜ

R
µν are left and right generators of Spin(D, 1) [or Spin(D)] and depend on

z only. All the right generators (2.42) commute with all the left generators (2.36)
and obey the same commutation relations (2.37).

In accordance with theory of harmonic analysis on Lie groups (Barut and
Raczka, 1977; Zhelobenko and Schtern, 1983), there exists a complete set of
commuting operators, which includes Casimir operators, a set of the left generators
and a set of right generators (both sets contain the same number of generators). The
total number of commuting operators is equal to the number of parameters of the
group. In a decomposition of the left GRR, the nonequivalent representations are
distinguished by eigenvalues of the Casimir operators, equivalent representations
are distinguished by eigenvalues of the right generators, and the states inside the
irrep are distinguished by eigenvalues of the left generators.

In particular, Casimir operators of the spin Lorentz subgroup are functions
of Ŝ

R
µν (or Ŝµν) and commute with all the left generators (with left translations

and rotations), but do not commute with generators of the right translations. These
operators distinguish equivalent representations in the decomposition of the left
GRR. Aspects of the theory of harmonic analysis on the 3+ 1 and 2+ 1 Poincaré
groups were considered in Rideau (1966), Hai (1969, 1971), and Gitman and
Shelepin (1997), respectively.

If GRR acts in the space of all functions on the groupG, a regular represen-
tation acts in the space of functionsL2(G, µ), such that the norm∫ ∗

f (g) f (g) dµ(g) (2.43)

is finite (Vilenkin and Klimyk, 1991; Zhelobenko and Schtern, 1983), wheredµ(g)
is an invariant measure on the group. The regular representation is unitary, as
follows from (2.43) and from the invariance of the measure. However, we will also
use nonunitary representations (in particular, finite-dimensional representations of
the Lorentz group). Therefore, we consider the GRR as a more useful concept.
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2.4. Fields on the Poincar´e Group

As we have shown that the relations associated with the left GRR (2.23) define
the transformation law for coordinates (x, z) on the position–spin space under the
change from one Lorentz reference frame to another. The equations

f ′(x′, z′) = f (x, z), (2.44)

x′ = gx = 3x + a↔ UXU† + A, z′ = gz↔ UZ. (2.45)

define a scalar field on this space (i.e., a scalar field on the Poincar´e group). In
contrast to a scalar field on Minkowski space, this field is reducible with respect
to both mass and spin.

We consider the transformation laws ofx andz in various dimensions in more
detail.

In the two-dimensional case, matricesZ depend on only one parameter [angle
or hyperbolic angle, see (2.16), (2.17)]. The functions on the group depend onx =
(xµ) andz= eα [or x = (xk) andz= eiα in the Euclidean case]; it is appropriate
to consider these functions as functions of a real parameterα directly.

In the three-dimensional case, according to (2.14) and (2.15),

D = 3: Z =
(

z1 −∗z2̇

z2
∗
z1̇

)
; d = 2+ 1: Z =

(
z1

∗
z2̇

z2
∗
z1̇

)
, detZ = 1.

(2.46)

The functionsf (x, z) depend onx = (xµ) [in the Euclidean casex = (xk)] and
z= (z,

∗
z), wherez are the elements of the first column of the matrix (2.46). Let

us write the relation (2.45) ford = 2+ 1 in componentwise form

x′νσναα̇ = Uβ
α xµσµββ̇

∗
U β̇
α̇ + αµσµαα̇, (2.47)

z′α = Uβ
α zβ,

∗
z′α̇ =

∗
U β̇
α̇

∗
zβ̇ , z′α = (U−1)αβzβ,

∗
z′α̇ = (

∗
U−1)α̇

β̇

∗
zβ̇. (2.48)

Undotted and dotted indices correspond respectively, to spinors transforming by
means of the matrixU and, the complex conjugate matrix

∗
U . The invariant tensor

σναα̇ has one vector index and two spinor indices of distinct types.
For the groupM(3, 1), the matrixZ, detZ = 1, has the form (2.27); the

elementszα andzα of the first and second columns of the matrix (2.27) are subjected
to the same transformation law. The functionsf (x, z) depend onx = (xµ) and
z= (z,

∗
z, z,

∗
z). The main reason to consider not real parameters (e.g., real and

imaginary parts ofz, z), but z, z and
∗
z,
∗
z is the fact that the complex variables

are subjected to a simple transformation rule. The use of spaces of analytic and
antianalytic functions is suitable for the problem of decomposing the GRR.
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According to (2.45) and (2.22), one may write the transformation law of
xµ, zα,

∗
zα̇ in componentwise form

x′νσναα̇ = Uβ
α xµσµββ̇

∗
U β̇
α̇ + αµσµαα̇,

x′ν σ̄ α̇αν = (
∗
U−1)α̇

β̇
xµσ̄ β̇βµ (U−1)αβ + αµσ̄ α̇αµ , (2.49)

z′α = Uβ
α zβ,

∗
z′α̇ = U β̇

α̇

∗
zβ̇ , z′α = (U−1)αβzβ,

∗
z′α̇ = (

∗
U−1)α̇

β̇

∗
zβ̇. (2.50)

It is easy to see from (2.49) that the tensors

σµαα̇ = (σµ)αα̇, σ̄ α̇αµ = (σ̄µ)α̇α (2.51)

are invariant. These tensors are usually used to convert vector indices into spinor
ones and vice versa or to construct vectors from two spinors of different types:

xµ = 1

2
σ̄ µα̇α xα̇α, xαα̇ = σµαα̇xµ, qµ = 1

2
σ̄ µα̇αzα

∗
zα̇. (2.52)

In consequence of the unimodularity of 2× 2 matricesU , there exist invariant
antisymmetric tensorsεαβ = −εβα, εα̇β̇ = −εβ̇α̇, ε12 = ε1̇2̇ = 1, andε12 = ε1̇2̇ =
−1. Spinor indices are lowered and raised according to the rules

zα = εαβzβ, zα = εαβzβ, (2.53)

and in particularσµαα̇ = σ̄µα̇α. Below we will also use the notations∂α = ∂/∂zα,
∂α̇ = ∂/∂ ∗zα̇ and correspondingly∂α = −∂/∂zα, ∂α̇ = −∂/∂ ∗zα̇.

In the framework of the theory of the scalar functions on the Poincar´e group,
a standard spin description in terms of multicomponent functions arises under the
separation of space and spin variables.

Sincez is invariant under translations, any functionφ(z) carries a representa-
tion of the Lorentz group. Let a functionf (h) = f (x, z) allow the representation

f (x, z) = φn(z)ψn(x), (2.54)

whereφn(z) form a basis in the representation space of the Lorentz group. The latter
means that one may decompose the functionsφn(z′) of the transformed argument
z′ = gz in terms of the functionsφn(z):

φn(z′) = φl (z)Ln
l (U ). (2.55)

An action of the Poincar´e group on a lineφn(z)φn(z) is reduced to a multiplication
by the matrixL(U ), whereU ∈ Spin(D, 1), φ(z′) = φ(z)L(U ).
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Comparing the decompositions of the functionf ′(x′, z′) = f (x, z) over the
transformed basisφ(z′) and over the initial basisφ(z),

f ′(x′, z′) = φ(z′)ψ ′(x′) = φ(z)L(U )ψ ′(x′) = φ(z)ψ(x),

whereψ(x) is a column with componentsψn(x), one obtains

ψ ′(x′) = L(U−1)ψ(x), (2.56)

that is, the transformation law of a tensor field on Minkowski space. This law
corresponds to the representation of the Poincar´e group acting in a linear space of
tensor fields as follows:T(g)ψ(x) = L(U−1)ψ(3−1(x − a)). According to (2.55)
and (2.56), the functionsφ(z) andψ(x) transform under contragradient represen-
tations of the Lorentz group.

For example, let us consider scalar functions on the Poincar´e groupf1(x, z) =
ψα(x)zα and f2(x, z) = ψ̄α(x)

∗
zα, which correspond to spinor representations of

Lorentz group. According to (2.54) and (2.56),

ψ ′α(x′) = Uβ
α ψβ(x), ψ̄

′
α̇(x′) =

∗
U β̇
α̇ ψ̄ β̇(x). (2.57)

The productψα(x)ψ̄∗α(x) is Poincaré invariant.
Thus, tensor fields of all spins are contained in the decomposition of the field

(2.44) on the Poincar´e group, and the problems of their classification and of the
construction of explicit realizations are reduced to the problem of the decomposi-
tion of the left GRR.

Notice that above we reject the phase transformations, which correspond
to U = eiφ . These transformations of theU (1) group do not change space-time
coordinatesx, but change the phase ofz. According to (2.55) and (2.56), this
leads to the transformation of the phase of the tensor field componentsψn(x).
Taking account of this transformation means considering the functions on the
groupT(d) ×) Spin(D, 1)×U (1).

2.5. Automorphisms of the Poincaré Group and Discrete
Transformations: P, C, T

Let us consider elementsg↔ (A,U ), g0↔ (X, Z) of the Poincar´e group
M(D, 1). It is easy to see that the transformations

(A,U )→ (Ā, (U †)−1), (X, Z)→ (X̄, (Z†)−1), (2.58)

(A,U )→ (
∗
A,
∗

U ), (X, Z)→ (
∗
X,
∗
Z), (2.59)

(A,U )→ (−A,U ), (X, Z)→ (−X, Z) (2.60)
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are outer involutory automorphisms of the group and generate a finite group con-
sisting of eight elements.

The automorphisms (2.58)–(2.60) define discrete transformations of space-
time and spin coordinatesx, z. The substitution of transformed coordinates into
the functionsf (x, z) [or into the generators (2.36)] leads to a change in sign of
some physical variables. (Notice that the substitution both into the functions and
into the generators leaves signs unaltered.)

The space reflection (or parity transformationP) is defined by the relations
x0→ x0, xk →−xk, or X→ X̄. If X is transformed by means of the group ele-
ment (A,U ), thenX̄ is transformed by means of the group element (Ā, (U †)−1); see
(2.22). Therefore, the space reflection represents a realization of the automorphism
(2.58) of the Poincar´e group

(X, Z)
P→ (X̄, (Z†)−1). (2.61)

Thus, under the space reflection,x andzhave to be changed in all the constructions
according to (2.61). In particular, for the momentumP = pµσµ, we obtainP→
P̄, where P̄ = pµσ̄ µ. The generators of the rotations are not changed, and the
generators of the boosts change their signs only.

The time reflection transformationT ′ is defined by the relationxµ→
(−1)σ0µxµ, or X→−X̄, and corresponds to the composition of automorphims
(2.58) and (2.60):

(X, Z)
T ′→ (−X̄, (Z†)−1). (2.62)

InversionPT′, (X, Z)
PT′→ (−X, Z), corresponds to the automorphism (2.60).

Automorphism of the complex conjugation (2.59) means the substitution
i →−i ,

f (x, z)
C→
∗
f (x, z). (2.63)

One can show that in the framework of the characteristics related to the Poincar´e
group, this transformation corresponds to the charge conjugation. Both the trans-
formation (2.63) and the charge conjugation change the signs of all the generators,
p̂µ→− p̂µ, L̂µν →−L̂µν, Ŝµν →−Ŝµν . Below, considering RWE, we will see
that the transformation (2.63) also changes the sign of the current vectorj µ.

The time reversalT is defined by the relationX→−X̄ (the time reflection
transformationT ′), with the supplementary condition of energy sign conservation,
which meansP→ P̄. Therefore, we have the conditionŝpµ→−(−1)δ0µ p̂µ,
L̂µν →−(−1)δ0µ+δ0ν L̂µν , and Ŝµν →−(−1)δ0µ+δ0ν Ŝµν . The transformationCT′

obeys these conditions.
However, it is known (Kemmeret al., 1959; Umezavaet al., 1954) that it

is possible to give two distinct definitions of the time-reversal transformation
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obeying the above conditions. Wigner time reversalTW leaves the total charge (and
correspondinglyj 0) unaltered, and reverses the direction of currentj k. Schwinger
time reversalTSch (Schwinger, 1951) leaves the currentj k invariant and reverses
the charge.

The transformationCT′ changes the sign ofj 0 and therefore can be identi-
fied with Schwinger time reversal,TSch= CT′. TheCPTSch transformation cor-
responds to the inversion (X, Z)→ (−X, Z). The Wigner time reversalTW and
CPTW transformation can be defined considering both outer and inner automor-
phisms of the proper Poincar´e group (Buchbinderet al., 2000b). Namely,CPTW =
Ix Iz, whereIz is defined as

(X, Z)
Iz→ (X, Z(−iσ2)) (2.64)

and is a composition of the inner automorphism (X, Z)→ (X̄T
, (ZT )−1) and of

the rotation by the angleπ . Wigner time reversal is the composition of the above
transformations,TW = IzCT= IzTSch.

The improper Poincar´e group is defined as a group that includes continuous
transformations of the proper Poincar´e groupg ∈ M(D, 1) and the space reflec-
tion P.

In the Euclidean case, the space reflection is reduced to the substitution

(X, Z)
P→ (−X, Z). The charge conjugation inverts the momentum and spin ori-

entation.

2.6. Equivalent Representations

In the decomposition of the scalar field (2.44) on the Poincar´e group (or, which
is the same, of the left GRR), there are equivalent representations distinguished
by the right generators.

Remember that representationsT1(g) and T2(g) acting in linear spacesL1

and L2, respectively, are equivalent if there exists an invertible linear operator
A: L1→ L2 such that

AT1(g) = T2(g)A. (2.65)

In particular, the left and right GRR of a Lee groupG are equivalent. The oper-
ator (Af )(g) = f (g−1) realizes the equivalence (Vilenkin, 1968; Zhelobenko and
Schtern, 1983).

Let us consider functionsf (x, z) belonging to two equivalent representations
in the decomposition of the left GRR of the groupM(D, 1) [or M(D)]. If the
representationsT1(g) andT2(g) acting in the different subspacesL1 andL2 of the
space of functions on the group are equivalent, then

AT1(g) f1(x, z) = T2(g)A f1(x, z), f2(x, z) = A f1(x, z),
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where f1(x, z) ∈ L1 and f2(x, z) ∈ L2. In particular, if the operatorA: L1→ L2 is
a function of the right translation generatorsp̂R

µ, then one cannot map the function
f1(x, z) to the function f2(x, z) by the group transformation, which leaves the
interval square invariant. Therefore, the physical equivalence of the states, which
corresponds to equivalent irreps in the decomposition of the scalar fieldf (x, z),
is not evident.

Below we will consider a number of examples in various dimensions. In
particular, in the framework of the representation theory of the three-dimensional
Euclidean groupM(3), irreps characterized by different spins (but with the same
spin projection on the direction of propagation) are equivalent. There are no contra-
dictions in the fact that in this case, different particles are described by equivalent
irreps since it is not possible to map corresponding wave functions into one another
by the rotations or translations of the frame of reference.

In some cases, more general considerations may be based on the represen-
tation theory of an extended group. In the framework of the latter, there are two
possibilities: either irreps labeled by different eigenvalues of right generators of the
initial group are nonequivalent, or some equivalent irreps of the initial group are
combined into one irrep. For example, in nonrelativistic theory, spin becomes the
characteristic of nonequivalent irreps after the extension ofM(3) up to the Galilei
group. In 3+ 1 dimensions, form> 0, the proper Poincar´e group representations
characterized by different chiralities are equivalent. If we go from the Lorentz
group to the groupSO(3, 2), then all states characterized by spins with different
chiralitiesλ, λ = −s,−s+ 1, . . . , s, are combined into one irrep.

The space of functionsf (x, z) contains functions transforming under equiva-
lent representations of the proper Poincar´e group and is sufficiently wide to define
discrete transformations, including space reflection, time reflection, and charge
conjugation. These discrete transformations associated with automorphisms of
the group also combine equivalent irreps of the proper Poincar´e group into one
representation of the extended group. For example, in 3+ 1 dimensions, space
reflection combines two equivalent irreps of the proper group labeled byλ and−λ
into one irrep of the improper group.

As we will see below, the different types of RWE (finite-component and
infinite-component equations) are also associated with equivalent representations
in the decomposition of the left GRR.

Thus, initially, it is appropriate to consider all representations in the decom-
position of the scalar field on the Poincar´e group, including equivalent ones. In
this sense we note the close analogy with the theory of the nonrelativistic three-
dimensional rotator (Biedenharn and Louck, 1981; Landau and Lifschitz, 1977;
Wigner, 1959). In the latter theory, one considers functions on the rotation group
SU(2) and two sets of operators: angular momentum operators in an inertial labo-
ratory (space-fixed) frame (left generatorsĴL

i ) and angular momentum operators
in a rotating (body-fixed) frame (right generatorsĴR

i ). The classification of the
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rotator states is based on the use of the complete set of commuting operators,
which, besideŝJ2 andĴL

3, includes alsôJR
3 . The operator̂JR

3 distinguishes equiv-
alent representations in the decomposition of the left GGR of the rotation group
and corresponds to a quantum number that does not depend on the choice of
the laboratory frame. This quantum number plays a significant role in the theory
of molecular spectra. In the 3+ 1-dimensional case, there exist two analogs of
ĴR

3 , namelyB̂R
3 = ŜR

03 and ŜR
3 = ŜR

12, which act in the space of functions on the
Poincaré group. As we will see below, the first may be interpreted as a chirality
operator, and the second allows us to distinguish particles and antiparticles.

2.7. Quasiregular Representations and Spin Description

The consideration of GRR of the Poincar´e group ensures the possibility of a
consistent description of particles with arbitrary spin by means of scalar functions
onRd × Spin(D, 1). At the same time, for the description of spinning particles,
it is possible to use the spacesRd × M , whereM is a homogeneous space of the
Lorentz group (one- or two-sheeted hyperboloid, cone, complex disk, projective
space, and so on); see, for example, B´acry and Kihlberg (1969), Kihlberg (1970),
Boyer and Fleming (1974), Wigner (1963), Kim and Wigner (1987), Biedenharn
et al. (1988), Haslewicz and Siemion (1992), Kuzenkoet al. (1995), Lyakhovich
et al. (1996), Deriglazov and Gitman (1999), Drechsler (1997), and Jackiw and
Nair (1991), Plyushchay (1991, 1992), Cortes and Plyushchay (1996) for the 3+ 1-
and 2+ 1-demensional cases, respectively. In some work, fields on homogeneous
spaces are considered; in other work, such spaces are treated as phase spaces of
a classical mechanics, and the latter are treated as models of spinning relativistic
particles.

These spaces appear in the framework of the next group-theoretic scheme.
Let us consider the left quasiregular representation of the Poincar´e group

T(g) f (g0H ) = f (g−1g0H ), H ⊂ Spin(D, 1). (2.66)

H is a subgroup of Spin(D, 1), and sincex is invariant under right rotations [see
(2.40)],

g0↔ (X, Z), g0H ↔ (X,ZH).

Therefore, the relation (2.66) defines the representation of the Poincar´e group in
the space of functionsf (x, zH) on

Rd × (Spin(D, 1)/H ). (2.67)

In the decomposition of the representation in the space of functions on Spin(D, 1)/
H [or Rd × (Spin(D, 1)/H )], there is, generally speaking, only part of the irreps
of the Lorentz (or Poincar´e) group. In particular, the caseH ∼ Spin(D, 1) corre-
sponds to a scalar field on Minkowski space. The classification and description
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of homogeneous spaces of 3+ 1 Poincaré and Lorentz groups can be found in
Finkelstein (1955), Bacry and Kihlberg (1969), and Gel’fandet al. (1966).

Thus, the consideration of quasiregular representations allows one to con-
struct a number of spin models classified by subgroupsH ⊂ Spin(D, 1). But the
existence of a nontrivial subgroupH leads to the rejection of part of the equivalent
(with different characteristics with respect to the Lorentz subgroup) or, possibly,
nonequivalent irreps of the Poincar´e group.

2.8. Relativistic Wave Equations

The problem of RWE construction for particles with arbitrary spin in various
dimensions is far from resolved and continues to attract significant attention. To
describe massive particles of spins in four dimensions, one usually employs the
equations connected with the representations (s

2
s
2) and (2s±1

4
2s∓1

4 ) of the Lorentz
group (see, e.g., Ohnuki, 1988; Buchbinder and Kuzenko, 1995). These equations
admit Lagrangian formulations (Fierz and Pauli, 1939; Singh and Hagen, 1974a,
b), but fors> 1, minimal electromagnetic coupling leads to noncasual propagation
(Wightman, 1978; Zwanziger, 1978). On the other hand, all known equations with
casual solutions either have a redundant number of independent components [as
the equations (Hurley, 1971; Kruglov, 1999) for representations (s0) and (0s)
have] or describe many masses and spins simultaneously, as the Bhabha equations
(Lubanski, 1942; Bhabha, 1945; Krajcik and Nieto, 1977) do. Besides the problem
of interaction of higher spin fields, one may mention attempts to construct RWE
with a completely positive energy spectrum (Majorana, 1932; Gel’fandet al.,
1963; Stoyanov and Todorov, 1968; Dirac, 1971, 1972a) and RWE for fractional
spin fields (Jackiw and Nair, 1991; Plyushchay, 1991, 1992; Gitman and Shelepin,
1997).

With respect to the mathematical methods used, it is possible to divide ap-
proaches to RWE construction into three groups.

The first approach, which follows Dirac (1936), Fierz and Pauli (1939), Rarita
and Schwinger (1941), and Bargmann and Wigner (1948), deals with equations
for symmetric spin tensors. It allows one to describe fields with fixed mass and
spin and also to construct RWE that admit Lagrangian formulation; however, as
mentioned above, fors> 1, we face the problem of noncasual propagation.

The second approach, which follows Kemmer (1939), Lubanski (1942),
Bhabha (1945), Harish-Chandra (1947), Gel’fand and Yaglom (1948), and
Gel’fandet al.(1963) is devolted to studying RWE of the form (αµ p̂µ − ~)ψ(x) =
0, and is based on the use of algebraic properties ofα-matrices. These equations
admit Lagrangian formulation; however, fors> 1, they describe a nonphysical
spectrum of particles: a decreasing mass with increasing spin.

The third approach is connected to the use of supplementary variables to
describe spin degrees of freedom and initially was suggested for RWE with a
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mass spectrum (Ginzburg and Tamm, 1947; Ginzburg, 1956). It was used for
constructing positive-energy wave equations (Dirac, 1971, 1972a; Stoyanov and
Todorov, 1968), equations describing gauge fields (Vasiliev, 1992, 1996), and
anyon equations (Gitman and Shelepin, 1997; Jackiw and Nair, 1991; Plyushchay,
1991, 1992).

From the point of view of the approach that we developed above, the problem
of constructing RWE looks like the selection of invariant subspaces in the space
of functions on the group.

The classification of the scalar functions can be based on the use of the oper-
atorsĈk commuting withTL(g) (and correspondingly with all the left generators).
For these operators, as a consequence of the relationĈf (x, z) = c f (x, z), one
obtains thatĈ f ′(x, z) = c f ′(x, z), where f ′(x, z) = TL(g) f (x, z). Therefore, dif-
ferent eigenvaluesc correspond to subspaces that are invariant with respect to the
action ofTL(g). The invariant subspaces correspond to subrepresentations of the
left GRR.

In addition to the Casimir operators, for the classification, one may use the
right generators since all the right generators commute with all the left generators.
The right generators, as mentioned, distinguish equivalent representations in the
decomposition of the left GRR.

There is some freedom to choose commuting operators that are functions
of the right generators of the Poincar´e group. We will use only functions of the
generators of the right rotations (2.42), in particular, for coordination with the
standard formulation of the theory.

Following the general scheme of harmonic analysis, forM(D, 1), one may
consider the system consisting ofd equations

Ĉk f (x, z) = ck f (x, z), (2.68)

whereĈk are the Casimir operators of the Poincar´e group and of the spin Lorentz
subgroup. These operators constitute a subset of the complete set of commuting
operators on the Poincar´e group. This is the system we will use ford = 2+ 1
below.

On the other hand, there exist additional requirements associated with the
physical interpretation. In the first place, in the massive case, the system must
be invariant under space reflection in order to describe states with definite parity.
Second, it is often supposed that the system contains an equation of first order in
∂/∂t [the approach based on the first-order equations advocated mainly in Bhabha
(1945), Krajcik and Nieto (1976), and Biritz (1979).8

8 As a consequence of relativistic invariance, an equation linear in∂/∂t can be either first order or
infinite order in space derivatives [square-root Klein–Gordon equation (Briegelet al., 1991; Samarov,
1984; Smith, 1993; Sucher, 1963)]. The latter type of equation is naturally obtained in the theory of
Markov processes for probability amplitudes (Shelepin, 1997).
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The Casimir operators of the Poincar´e group are functions of the generators
p̂µ andĴµν . In odd dimensions, there exists a Casimir operator linear inp̂µ since
the invariant tensorεµ...ν also has an odd number of indices. As we will see below,
in 2+ 1 dimensions, the system (2.68) is invariant under space reflections.

In even dimensions, the invariant tensorεµ...ν also has an even number of
indices, and therefore a Casimir operator linear inp̂µ does not exist. In even
dimensions under space reflection, the irrep of the proper Poincar´e group is mapped
onto an equivalent irrep labeled by other eigenvalues of the Casimir operators of
the spin Lorentz subgroup. The linear combinations of basis elements of these
two irreps form the bases of twoM = ±1 irreps labeled by intrinsic parity of the
improper Poincar´e group including space reflection.

In even dimensions, there exists an operatorĈ
′ = p̂µ0̂

µ, where 0̂µ =
0̂µ(z, ∂/∂z), commuting with all left generators and connecting the states that
are interchanged under space reflections. In contrast to the Casimir operators, this
operator is not a function of generators of the Poincar´e group and does not commute
with some right generators. A first-order equation

p̂µ0̂
µ f (x, z) = ~f (x, z) (2.69)

connects two irreps of the groupM(D, 1) characterized by different eigenvalues
of the Casimir operator of the spin Lorentz subgroup. Equations (2.68) and (2.69)
have the same form; namely, the invariant operator acts on the scalar function
f (x, z) on the groupM(D, 1). The addition of the operatorŝ0µ means in fact the
extension of the Lorentz group to a wider group [in particular, in four dimensions,
to the 3+ 2 de Sitter groupSO(3, 2)]. Equation (2.69) replaces equations of the
system (2.68), which are not invariant under space reflection.

In the approach under consideration, equations have the same form for all
spins. The separation of the components with fixed spin and mass is realized by
fixing eigenvalues of the Casimir operators of the Poincar´e group (or the operator
p̂µ0̂

µ). Fixing the representation of the Lorentz group under whichφ(z) transforms
in the decomposition

f (x, z) = φn(z)ψn(x),

one obtains RWE in standard multicomponent form. This fixing is realized by the
Casimir operator of the spin Lorentz subgroup.

There are two types of equations to describe one and the same spin, one on
functions f (x, z), whereφn(z) transforms under the finite-dimensional nonunitary
irrep of the Lorentz group, and another on functionsf (x, z), whereφn(z) trans-
forms under the infinite-dimensional unitary irrep of the Lorentz group. In the
matrix representation, these equations are written in the form of finite-component
or infinite-component equations, respectively. The latter type of equation [e.g.,
the Majorana equations (Fradkin, 1966; Gel’fandet al., 1963; Majorana, 1932;
Stoyanov and Todorov, 1968)] is interesting because it gives the possibility to
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combine relativistic invariance with a probability interpretation. The desirability
of this combination was emphasized in Dirac (1972b).

Let us briefly consider the possibility of the existence of particles with frac-
tional spin. The restrictions on the spin value arise in the representation theory
of M(D) andM(D, 1) if one restricts the consideration to (1) unitary, (2) finite-
dimensional (with respect to the number of spin components), or (3) single-valued
representations. (The latter means that the representation acts in the space of single-
valued functions). The restriction to single-valued functions (often supposed in
mathematical papers related to a classification of representations) is omitted in
some physical problems, which allows one to consider particles with fractional
spin (anyons). Thus, we will also consider multivalued representations ofM(D)
and M(D, 1) in the space of the functionsf (x, z) on the group. These repre-
sentations correspond to single-valued representations of the universal convering
group.

3. TWO-DIMENSIONAL CASE

3.1. Field on the GroupM(2)

In the two-dimensional case, the general formulas become simpler. The matri-
cesU (2.17) of theSO(2) subgroup depend on only one parameter, namely the angle
φ, 0≤ φ ≤ 4π . Using the correspondenceg0↔ (X,Y(θ/2)), g↔ (A,U (φ/2)),
one may write the action of GRR:

TL(g) f (x, θ/2)= f (x′, θ/2− φ/2), (3.1)

x′1 = (x1− a1) cosφ + (x2− a2) sinφ, x′2 = (x2− a2)

cosφ − (x1− a1) sinφ, TR(g) f (x, θ/2)= f (x′′, θ/2+ φ/2), (3.2)

x′′1 = x1+ a1 cosθ − a2 sinθ, x′′2 = x2+ a2 cosθ + a1 sinθ.

Left and right generators that correspond to the parametersθ andφ are given by

p̂k = −i ∂k, Ĵ = L̂ + Ŝ, (3.3)

p̂R
k = i3i

k∂i , Ĵ
R = −Ŝ, (3.4)

where

L̂ = i (x1∂2− x2∂1) = −i
∂

∂ϕ
, Ŝ= −i

∂

∂θ
, 3 =

(
cosθ sinθ
−sinθ cosθ

)
.

The functions on the group are those onR2× S1, and the invariant measure on the
group is

dµ(x, θ ) = (4π )−1 dx1 dx2 dθ, −∞ < x < +∞ 0≤ θ < 4π.
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We will consider two complete sets of commuting operators:p̂1, p̂2, Ŝandp̂2, Ĵ, Ŝ.
The eigenfunctions of these operators are

〈x1x2θ | p1 p2s〉 = (2π )−1 exp(ip1x1+ ip2x2+ isθ ), (3.5)

〈rϕθ | pjs〉 = (2π )−1/2i l Jl (pr) exp(ilϕ) exp(isθ ), (3.6)

wherel = j − s is the orbital momentum andJl (pr ) is the Bessel function. Irreps
are labeled by eigenvaluesp2 of the Casimir operator̂p2. For p 6= 0, the represen-
tation is irreducible; forp = 0, it decomposes into one-dimensional irreps of spin
subgroupU (1), which are labeled by eigenvaluess of the spin projection operator
(or, simply speaking, the spin operator)Ŝ.

For p 6= 0, the representations characterized by the spinss and s′ = s+
n, wheren is an integer, are equivalent. The operatorŜ commutes with all left
generators, but does not commute with the generators of right translations, which
mix spin and space coordinates. Operatorsp̂R

+ = pR
1 − i pR

2 and p̂R
− = pR

1 + i pR
2

are raising and lowering operators with respect to spins,

p̂R
± | p1 p2s〉 = (ip1± p2) | p1 p2s± 1〉. (3.7)

Right translations do not conserve both interval (distance) and spins.
The functions (3.6) satisfy the relations of orthogonality and completeness∫

〈pjs | rϕθ〉〈rϕθ | pjs〉r dr dϕ dθ = δ(p− p′)
p

δ j j ′δss′ , (3.8)∫ ∑
l ,s

〈rϕθ | pjs〉〈pjs | rϕθ〉 dp= δ(r − r ′)
r

δ(ϕ − ϕ′)δ(θ − θ ′). (3.9)

This means that we have obtained the decomposition of the left regular representa-
tion. The spin operator̂Sdistinguishes equivalent irreps (except for the casep = 0,
when irreps are labeled by its eigenvalues). The decomposition of the functions
of θ on the eigenfunctions of̂S corresponds to the Fourier series expansion of
functions on a circle.

Thus, the representations ofM(2) are single-valued for integer and half-
integers. Fractional values ofs correspond to multivalued representations. Irreps
are equivalent if they are labeled by the samep 6= 0 and the differences− s′ = n
is an integer. For fixedp 6= 0, there are only two nonequivalent single-valued
representations, which correspond to integer and half-integer spin. Nonequivalent
multivalued representations for fixedp 6= 0 are labeled bỹs ∈ [0, 1), s̃= s− [s].

3.2. Field on the GroupM(1, 1)

MatricesU (2.16) of theSO(1, 1) subgroup, which is isomorphic to an additive
group of real numbers, depend on the hyperbolic angleφ. Using the correspondence
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g0↔ (X, Z(θ/2)), g↔ (A,U (φ/2)), we write the action of GRR:

TL(g) f (x, θ/2)= f (x′, θ/2− φ/2), (3.10)

x′0 = (x0− a0) coshφ + (x1− a1) sinhφ,

x′1 = (x1− a1) coshφ + (x0− a0) sinhφ,

TR(g) f (x, θ/2) = f (x′′, θ/2+ φ/2), (3.11)

x′′0 = x0+ a0 coshθ − a1 sinhθ,

x′′1 = x1+ a1 coshθ − a0 sinhθ.

The functions on the group are the those onR2× R, and the invariant measure on
the group can be written as

dµ(x, θ ) = dx0 dx1 dθ, −∞ < x, θ < +∞.
As above, we will consider two complete sets of commuting operators,p̂1, p̂2, Ŝ
and p̂2, Ĵ, Ŝ, where Ĵ = L̂ + Ŝ, L̂ = i (x0∂0+ x1∂1), Ŝ= −i ∂/∂θ . The eigen-
functions of the first set are

〈x0x1θ | p1 p2λ〉 = (2π )−3/2 exp(ipµxµ + iλθ ), (3.12)

whereλ is an eigenvalue of the spin projection (chirality) operatorŜ. The form of
the eigenfunctions of the second set depends on the type of irrep. There are four
types of unitary irreps labeled by the eigenvaluem2 of the operator̂p2 [80].

1. m2 > 0. Representations correspond to particles of nonzero mass; the
eigenfunctions of the operatorsp̂2, Ĵ, Ŝare

〈rϕθ | mjλ〉 = (4π )−1i exp(π l/2)H (2)
i l (±mr) exp(ilϕ) exp(iλθ ), (3.13)

whereH (2)
i l (mr) is the Hankel function,r 2 = (x0)2− (x1)2, and± corre-

sponds to the sign of energyp0.
2. m2 < 0. Representations correspond to tachyons, which ind = 1+ 1, are

more similar to usual particles because of the symmetry between space
and time variables. The form of〈rϕθ | mjλ〉 coincides with (3.13), butm
is imaginary.

3. m= 0, p1 = ±p0. Representations correspond to massless particles. Ac-
cording to (2.39), for the action of finite transformationsT0(g) on the
functions f (p,±p, θ/2), one obtains

T0(g) f (p,±p, θ/2)= eiap′ f (p′,±p′, θ/2− φ/2), p′ = e∓φ p.

Therefore, the representationT0(g) is reducible and splits into four irreps
differing in the signs ofp0 andp1 = ±p0, and an reducible representation
that corresponds tom= p0 = 0.
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4. m= p0 = 0. This representation decomposes into a sum of one-dimen-
sional irreps of the groupSO(1, 1), which are labeled by eigenvalues ofŜ.

There are no integer value restrictions for the spectrum ofŜ, and chirality
can be fractional,−∞ < λ < +∞. The decomposition of the functionsf (x, θ )
in terms of the eigenfunctions of̂S corresponds to the Fourier integral expansion
of functions on a line. The equivalence of the representations characterized by
differentλ is related to the fact that, as in the Euclidean case, the operatorŜdoes
not commute with right translations.

One can convert vector indices into spinor indices and vice versa with the
help of the formula (2.10). In the case under consideration, matricesU are real and
symmetric,X′ = UXU, or in componentwise form,x′νσναα′ = Uβ

α σµββ ′x
µUβ ′

α′ ,
and there exists one type of spinor index only. Denoting elements of the first
column of the matrixZ transforming under the spinor representation ofSO(1, 1)
by zα, z1 = cosh(θ/2), z2 = sinh(θ/2), we obtain for the components of the vector
and antisymmetric tensor

qµ = σµαβzαzβ, q0 = coshθ, q1 = sinhθ, q01 = σ 01αβzαzβ = i . (3.14)

There exist two invariant tensorsηµν andεµν , which can be used for raising of
indices. This is related to the fact that the vectors (x0 x1) and (x1 x0) have the
same transformation rule, and one can construct an invariant from two vectors in
two different ways:ηµνqµq′ν = cosh(θ − θ ′), εµνqµq′ν = sinh(θ − θ ′).

3.3. Relativistic Wave Equations in 1+ 1 Dimensions

An irrep of the groupM(1, 1) can be extracted from GRR by fixing the sign
of p0 and eigenvalues of the operatorsp̂2, Ŝ,

p̂2 f (x, θ ) = m2 f (x, θ ), (3.15)

Ŝ f(x, θ ) = λ f (x, θ ), (3.16)

where the chiralityλ distinguishes equivalent irreps labeled by identical eigen-
valuesm2 of the Casimir operator̂p2. Solutions of this system have the form
f (x, θ ) = ψ(x)eiλθ , wherep̂2ψ(x) = m2ψ(x).

According to (2.61), space reflection convertseiλθ to e−iλθ . Irreps of the
improper Poincar´e group are labeled by massm, sign p0, intrinsic parityn = ±1,
and spins= |λ| (as above,s distinguishes equivalent irreps). In the rest frame, it
is easy to write down functions with the mentioned characteristics:

e±imx0
(eiλθ ± e−iλθ ). (3.17)

States with arbitrary momentum can be obtained from (3.17) by hyperbolic rota-
tions and form the basis of the unitary irrep of the improper group. On the other
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hand, the problem arises of constructing equations that, unlike the system (3.15)–
(3.16), are invariant under the improper Poincar´e group and have solutions with
definite parity. These equations should combine states with chiralities±λ.

The general form of the equations linear inp̂µ is

p̂µ0̂
µ f (x, θ ) = ~f (x, θ ), (3.18)

where0̂µ = 0̂µ(θ, ∂/∂θ ). For invariance of (3.18) under space reflectionP and
hyperbolic rotations, the operatorp̂µ0̂

µ must commute withP and Ĵ = L̂ + Ŝ,
whence

0̂µ
P→ (−1)δ1µ0̂µ, [0̂0, Ŝ] = i 0̂1, [0̂1, Ŝ] = i 0̂0. (3.19)

The operators

0̂0 = scoshθ − sinhθ
∂

∂θ
, 0̂1 = ssinhθ − coshθ

∂

∂θ
, [0̂0, 0̂1] = −i Ŝ

(3.20)

obey these relations. One can construct the operators, which raise and lower chi-
rality λ by 1,

0̂+ = 0̂0− 0̂1 = e−θ (s+ ∂/∂θ ), 0̂− = 0̂0− 0̂1 = eθ (s− ∂/∂θ ). (3.21)

Operatorŝ00, 0̂1, and0̂2 = −i Ŝ= −∂/∂θ obey the commutation relations of the
generators of theSO(2, 1)∼ SU(1, 1) group:

[0̂a, 0̂b] = εabc0̂c, 0̂a = ηab0̂
b, η00 = η22 = −η11 = 1,

0̂a0̂
a = s(s+ 1).

Thus, if symmetry with respect to space reflection holds, the condition of
mass irreducibility (3.15) can be supplemented by Eq. (3.18) instead of (3.16).
This means passing to a new set of commuting operators, namely fromp̂µ, Ŝ to
p̂µ, p̂µ0̂

µ. Let us consider the system

p̂2 f (x, θ ) = m2 f (x, θ ), (3.22)

p̂µ0̂
µ f (x, θ ) = ms f(x, θ ). (3.23)

The operator̂Sdoes not commute witĥpµ0̂
µ, and the particle with nonzero mass

described by Eq. (3.23) cannot be characterized by certain chirality. In the rest
frame, p0 = ±m, and the functionsf (x, θ ) = e±imx0

φ(θ ) should be eigenfunc-
tions of operator̂00 with eigenvalues±s. The equation

0̂0φ(θ ) = [scoshθ − (sinhθ )∂/∂θ ]φ(θ ) = ~φ(θ )

for ~ = ±s has solutions [cosh(θ/2)]2s and [sinh(θ/2)]2s, respectively. We will
consider two cases.
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Case 1.The solutions of the system (3.22)–(3.23) are sought in the space of
polynomials ofe−θ/2 andeθ/2 that correspond to finite-dimensional nonunitary rep-
resentations ofSU(1, 1). Corresponding representations of theSO(1, 1) subgroup
are also nonunitary. For these representations, the generatorŜ is anti-Hermitian,
and it is convenient to redefine the chirality operator asi Ŝ. In the rest frame, a
general solution of the system (3.22)–(3.23) is

f (x, θ ) = C1eimx0
[cosh(θ/2)]2s + C2e−imx0

[sinh(θ/2)]2s, (3.24)

where 2s is a positive integer. Therefore, for a unique spins, there are only two
independent components (with positive and negative frequency). The space inver-
sion takesθ to−θ , and in the rest frame, solutions with different sign ofp0 and
half-integers are characterized by opposite parityη. For integers, all solutions
are characterized byη = 1. Plane wave solutions, which correspond to a moving
particle, can be obtained from (3.24) by a hyperbolic rotation by the angle 2φ:

fm,s(x, θ ) = C1eik0x0+ik1x1{cosh[(θ + φ)/2]}2s

+ C2e−ik0x0−ik1x1{sinh[(θ + φ)/2]}2s,

wherek0 = mcosh 2φ, k1 = msinh 2φ.
In the ultrarelativistic limitφ→±∞, we have two states with chirality

λ = ±s, respectively. Thus, if in the rest frame, one may distinguish two com-
ponents with positive and negative frequency, then in the massless limit, one may
distinguish two components with positive and negative chirality.

The matrix form of the system (3.22)–(3.23) can be obtained by the decom-
position of f (x, θ ) over the basiseλθ/2, λ = −s,−s+ 1, . . . , s. There are 2s+ 1
componentsψ(x) in this form, but only two of them are independent. Notice that
representations ofSO(1, 1) of the formeλθ are nonunitary for realλ and the inte-
gral overθ is divergent. One can redefine the norm of a state with the help of the
scalar product in the space of multicomponent functionsψ(x), but this product is
not positive definite.

Fors= 1/2, substituting the functionf (x, θ ) = ψ1(x)eθ/2+ ψ2(x)e−θ/2 into
Eq. (3.23), we obtain the two-dimensional Dirac equation (Abdallaet al., 1991)

p̂µγ
µ9(x) = m9(x), γ 0 = σ1, γ 1 = −iσ2, 2Ŝ= γ 3 = σ3. (3.25)

where9(x) = (ψ1(x)ψ2(x))T . The matrixγ 3 = γ 0γ 1 corresponds to the chirality
operator and satisfies the condition [γ 3, γ µ]+ = 0. On the other hand, this matrix
corresponds to hyperbolic rotation, and similar to the 3+ 1 case, one can write
γ µγ ν = ηµν − iσµν , whereσ 01 = i γ 3. The invariant scalar product has the form
|ψ1(x)|2− |ψ2(x)|2.
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For s= 1, substituting the function f (x, θ ) = ψ11(x)eθ + ψ12(x)+
ψ22(x)e−θ into Eq. (3.23), we obtain

( p̂µ0̂
µ − m)9(x) = 0,

00 = 1√
2

0 1 0
1 0 1
0 1 0

 , 01 = 1√
2

0 −1 0
1 0 −1
0 1 0

 ,
Ŝ=

1 0 0
0 0 0
0 0 −1

 , (3.26)

where9(x) = (ψ11(x)ψ12(x)/
√

2ψ22(x))T . Using (3.14) to convert spinor indices
to vector ones, we obtainF0 = ψ22− ψ11,F1 = ψ22+ ψ11, andF01 = −F10 =
−iψ12, and we obtainp0F1− p1F0 = −imF01, i p0F10 = mF1, i p1F10 = mF0.
Thus, one can rewrite the 1+ 1 “Duffin–Kemmer” equation (3.26) in the following
form, which is similar to Proca equations in 3+ 1 dimensions [see (5.85), (5.89)]:

∂µFν − ∂νFµ = mFµν, ∂νFµν = mFµ. (3.27)

As a consequence of (3.27), we obtain∂µFµ = 0, ( p̂2−m2)Fµ = 0. But the
1+ 1-dimensional case is distinctly different from the 3+ 1-dimensional case
because the componentF01 = −F10 is characterized by zero chirality and thus the
roles ofFµν andFν are interchanged.

In the massless case, the system (3.27) splits into two independent equations
for the componentsFµ andFµν , respectively,

∂µFν − ∂νFµ = 0, (3.28)

∂µFµν = 0. (3.29)

The first equation has propagating solutions

F0 = C1eip(x0+x1) + C2eip(x0−x1), F1 = C1eip(x0+x1) − C2eip(x0−x1)

obeying the transversality condition∂µFµ = 0. The second equation [free two-
dimensional Maxwell equation (Abdallaet al., 1991) corresponds to the compo-
nents with zero chirality and has the trivial solutionFµν = const. only. Notice
that for real field f ∗(x, θ ) = f (x, θ ) components,Fµ andFµν also are real, and
propagating solutions do not exist form= 0.

If, for s= 1/2 ands= 1, the first equation of the system (3.22)–(3.23) is
the consequence of the second equation, then fors> 1, there are solutions of
Eq. (3.23) with mass spectrummi |si | = ms, si = s, s− 1, . . . ,−s. For the ex-
traction of the improper Poincar´e group characterized by certain massm and spin
s representations, it is necessary to use both equations of the system.
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Notice that the chiralityλ of a particle described by (3.15)–(3.16) can be
fractional, but the spins of a particle described by (3.22)–(3.23) can be only
integer or half-integer form 6= 0 and a finite number of componentsψ(x).

If 2s is not an integer, then acting by the raising operator on the state with lable
λ = −s, we will not get to the state labeled byλ = s and connected with the initial
state by the space reflection; moreover, the spectrum ofλ is not bounded above. On
the other hand, it is possible to develop an alternative approach (in particular, for
massive particles with fractional spin) based on using infinite-dimensional unitary
irreps ofSO(2, 1).

Case 2.Let us consider now the solutions of (3.22)–(3.23) in the space of
square-integrable functions ofθ . In the rest frame, as we have seen above, there
are two types of solutions. The solutions [sinh(θ/2)]2s are not square-integrable
for anys since the corresponding integral is divergent either at zero or at infinity.
The solutions [cosh(θ/2)]2s for s< 0 are square-integrable:∫ +∞

−∞
[cosh(θ/2)]4s dθ = 2B(1/2, 2s).

Therefore, in the space of square-integrable functions, Eq. (3.23) has only positive-
energy solutions. Solutions withp0 < 0 correspond to the equationp̂µ0̂

µ f (x, θ ) =
−msf(x, θ ). Normalized positive-energy solutions of the system (3.22)–(3.23) for
a particle with spin|s| and momentap0 = mcoshφ, and p1 = msinhφ are

f (x, θ ) = (2π )−1 [2B(1/2, 2s)]−1/2 eip0x0+i p1x1{cosh[(θ + φ)/2]}−2|s|. (3.30)

In contrast to the cased > 2, solutions with distincts are nonorthogonal. The
decomposition of the solutions (3.30) over the functionseiλθ [i.e., overSO(1, 1)
unitary irreps] corresponds to the Fourier integral expansion. We will consider
properties of the positive-energy equations in more detail in the 2+ 1-dimensional
case below.

4. THREE-DIMENSIONAL CASE

4.1. Field on the GroupM(3)

The case of theM(3) group is characterized by many-dimensional spin space.
On the other hand, the constructions allow a simple physical interpretation.

Using the operatorŝJ
i = L̂ i + Ŝ

i = (1/2)ε i jk Ĵ jk, it is possible to rewrite the
commutation relations (2.37) in the more compact form

[ p̂i , p̂k] = 0, [ p̂i , Ĵ
j
] = i ε i jk p̂k, [Ĵ

i
, Ĵ

j
] = i ε i jk Ĵk. (4.1)

The invariant measure on the group is given by the formulas

dµ(x, z) = Cd3x δ(|z1|2+ |z2|2− 1)d2z1 d2z2 = 1

16π2
d3x sinθ dθ dφ dψ,

−∞ < x < +∞, 0< θ < π, 0< φ < 2π, −2π < ψ < 2π, (4.2)
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where

z1 = cos
θ

2
ei (ψ−φ)/2, z2 = i sin

θ

2
ei (ψ+φ)/2

are the elements of the first column of matrix (2.46),z2 = −z1, z1 = z2, and
θ, φ, ψ are the Euler angles. The spin projection operators acting in the space
of the functions on the groupf (x, z) have the form

Ŝk = 1

2

(
zσk∂z− ∗z∗σ k ∂∗z

)
, z= (z1 z2), ∂z = (∂/∂z1 ∂/∂z2)T ,

Ŝ
R
k = −

1

2
(χ
∗
σk∂χ− ∗χσk∂ ∗χ ), χ = (z1− ∗z2̇), ∂χ = (∂/∂z1 −∂/∂ ∗z2̇)T . (4.3)

In terms of Euler angles, we obtain

Ŝ3 = −i ∂/∂φ, Ŝ
R
3 = i ∂/∂ψ. (4.4)

The operator̂p2 and the operator of the spin projection on the direction of
propagationŴ = p̂Ĵ = p̂Ŝare Casimir operators. The eigenvaluesS(S+ 1) of the
Casimir operator of the rotation subgroup inz-space,̂S2 = Ŝ2

R, define spinS. Com-
plete sets of the commuting operators{ p̂k, Ŵ, Ŝ2, Ŝ

3
R}, {p̂2, Ŵ, Ĵ2, Ŝ3, Ŝ2, Ŝ

R
3 }

consist of six operators (two Casimir operators, two left generators, and two right
generators). The Casimir operatorŴ does not commute witĥLk and Ŝk sepa-
rately, but only with the generatorŝJk = L̂k + Ŝk; therefore there are sets that do
not includeŴ, for example,{ p̂2, p̂3, L̂3, Ŝ3, Ŝ2, Ŝ

R
3 } and{ p̂µ, Ŝ3, Ŝ2, Ŝ

R
3 }.

We will consider the first set, in this case eigenfunctions have the simplest
form. This set includes two Casimir operators, the operator of spin squaredŜ2 and
the generator̂S

R
3 . The latter two generators commute with all left generators, but

do not commute with right generators and label equivalent representations in the
decomposition of the left GRR.

According to (4.4), the eigenfunctions ofŜ
R
3 , Ŝ

R
3 | · · ·n〉 = n | · · ·n〉, have

the form | · · ·n〉 = F(x, θ, φ) exp(−inψ) and differ only by a phase factor. As
a consequence of the commutation relations of the generatorsŜ

R
k , the operators

Ŝ
R
± = Ŝ

R
1 ± i Ŝ

R
2 are the raising and lowering operators for the eigenfunctions of

Ŝ
R
3 ,

Ŝ
R
± | · · ·n〉 = C(S, n) | · · ·n± 1〉. (4.5)

The intertwining operatorŝS
R
± consist of the generators of right rotations, which

conserve the interval square according to (2.35). Moreover, the right rotations do
not act onx. But there are no transformations (rotations and translations) of the
reference frame, which connect representations with differentn. Notice that the
states labeled byn and−n are interchanged under charge conjugation (2.63).
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The operator̂S2 also labels equivalent representations of theM(3) group. This
operator commutes with all generators except right translations, and therefore an
intertwining operator is a function of the latter generators. Right translations change
both the interval and the spin. Therefore, it is natural to characterize a free particle
in three-dimensional Euclidean space not only by momentum and spin projection
on the direction of propagation, but also by spinS.

There are two standard realizations of the representation spaces, correspond-
ing to eigenvaluesn = ±2Sandn = 0 of the operator̂S

R
3 .

The first realization is the space of analytic (n = −2S) functions f (x, z) or
antianalytic (n = 2S) functions f (x,

∗
z) of two complex variablesz1, z2, |z1|2+

|z2|2 = 1, that is, the space of functions of two-component spinors. In particular,
according to (4.3), for the space of analytic functions, we have

Ŝk = 1

2
zσk∂z, (4.6)

Ŝ
R
3 = −(z1∂/∂z1+ z2∂/∂z2) andŜ2 = Ŝ

R
3 (Ŝ

R
3 − 1). The eigenfunctions of the op-

erator of spin squared are polynomials of the power 2S in z1, z2. The charge
conjugation transformation connects equivalent irreps labeled byn = ±2S and
the spaces of analytic and antianalytic functions. This transformation reverses the
direction of momentum and spin.

The second realization is the space of functions, which do not depend on the
angleψ , and corresponds ton = 0. It is the space of functions of five real variables
on the manifold

R3× S2, dµ = (4π )−1 d3x sinθ dθ dφ.

The point in the spin space [i.e., on the sphereS2 ∼ CP1 ∼ SU(2)/U (1)] can be
defined by the spherical coordinatesθ, φ or by two complex variables

z1 = cos
θ

2
e−iφ/2, z2 = sin

θ

2
eiφ/2

[in this case, one may use (4.6) for the spin projection operators], or by one complex
numberz= z1/z2 (this case corresponds to the realization in terms of the projective
spaceCP1). In terms of variablesθ, φ, the eigenfunctions of the operatorsŜ, Ŝ3

are Ps
S(cosθ )eisφ , wherePs

S(cosθ ) are associated Legendre functions (Vilenkin,
1968).

Let us consider eigenfunctions of the set of the operators{ p̂µ, Ŵ, Ŝ2} in the
space of analytic function ofz1, z2:

p̂µ f (x, z) = pµ f (x, z), Ŝ2 f (x, z) = S(S+ 1) f (x, z),

p̂Ŝ f (x, z) = psf(x, z). (4.7)

The eigenfunctions of̂S2 are polynomials of the power 2S in z [the unitary irreps
of SU(2) are finite dimensional, therefore the spinS and the spin projection on
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the direction of propagations are integer or half-integer]. Letpµ = (0, 0, p); then
the normalized solutions of the system (4.7) are

|0 0pSs〉 = (2π )−3/2

(
(2S)!

(S+ s)!(S− s)!

)1/2

(z1)S+s(z2)S−seix3 p.

The states with arbitrary direction of vectorp can be obtained by the rotation
P = U P0U †, Z = UZ0, P0 = pσ3, Z0 = (z1z2)T:

|p1 p2 p3Ss〉 = (2π )−3/2

(
(2S)!

(S+ s)!(S− s)!

)1/2

× (z1 ∗u1 + z2 ∗u2
)S+s(−z1u2+ z2u1

)S−s
eipx, (4.8)

whereu1, u2 are the elements of the first line of the matrixU . Notice that it is
sufficient to use only two angles for the parametrization of matrixU since the
initial state has a stationary subgroupU (1).

For the rest particle,̂p2 = p̂Ŝ= 0, and only in this case areM(3) irreps
labeled by differentSnonequivalent.

In the general case, functions corresponding toα particle of spinS have the
form

fS(x, z) =
2S∑

n=0

φn(z)ψn(x), φn(z) = (Cn
2S

)1/2
(z1)S−n(z2)n, (4.9)

∫ ∗
fS (x, z) f ′S′ (x, z) dµ(x, z) = δSS′

∫ 2S∑
n=0

∗
ψn (x)ψ ′n(x) d3x, (4.10)

whereC2S
n is the binomial coefficient anddµ(x, z) is the invariant measure (4.2).

The relation (4.9) gives the connection between the description by the functions
f (x, z) and the standard description by the multicomponent functionψn(x). It
is easy to see that the action of the operatorsŜk = 1

2zσk∂z on the function (4.9)
reduces to the multiplication of the columnψ(x) by (2S+ 1)× (2S+ 1) matrices
Sk of SU(2) generators in the representationTS, Ŝk f (x, z) = φ(z)Skψ(x). The
matricesSk obey the commutation relations of spin projection operators, namely
[Si , Sj ] = i ε i jk Sk.

In particular, the linear function ofz1, z2 corresponds to spinS= 1/2, and the
action of the operatorŝSk onψ(x) is reduced to the multiplication byσ -matrices,
Ŝk f (x, z) = φ(z)σkψ(x).

As mentioned above, the operatorŜ2 is not a Casimir operator ofM(3) and
labels equivalent representations of the group. This operator is the direct analog
of the Lorentz spin operator in the pseudo-Euclidean case, and we will consider
its properties in detail.

1. The operator̂S2 is composed of right generators commuting with all
left generators and therefore is not changed under the coordinate
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transformation (left transformations of the Euclidean group). The right
transformations do not change the spin projections on the direction of
propagation, but change both spinSand interval (distance).

2. The operator̂S2 does not depend onx and commutes with the operators
xk, p̂k, Ŝk; therefore, it is an integral of motion for any Hamiltonians of
the formĤ = Ĥ (xk, p̂k, Ŝk).

3. The eigenvalues of̂S2 label irreps of the rotation subgroup in the spin
space and define the possible values of the spin projections.

Notice that in the representation theory of the Galilei group [symmetry group
of nonrelativistic mechanics, which includesM(3) and ensures more general de-
scription], irreps labeled by different eigenvalues ofŜ2 are not equivalent. The
classification of irreps of the Galilei group can be based on the use of two invari-
ant equations. The Schr¨odinger equation fixes the massm, and the second equa-
tion fixes the eigenvalue of spin operatorŜ2 (Hamermesh, 1960; Levy-Leblond,
1963).

4.2. Field on the GroupM(2, 1) and Fractional Spin

Using the operatorŝJ
ρ = L̂

ρ + Ŝ
ρ = (1/2)ερµν Ĵµν , it is possible to rewrite

the commutation relations (2.37) in the form

[ p̂µ, p̂ν ] = 0, [ p̂µ, Ĵ
ν
] = −i εµνη p̂η, [Ĵ

µ
, Ĵ

ν
] = −i εµνη Ĵη. (4.11)

The invariant measure on the group is given by the formulas (Vilenkin, 1968)

dµ(x, z) = C d3x δ(|z1|2− |z2|2− 1)d2z1 d2z2 = 1

8π2
d3x sinhθ dθ dφ dψ,

−∞ < x < +∞, 0< θ <∞, 0< φ < 2π,

−2π < ψ < 2π, (4.12)

wherez1 = coshθ2ei (ψ−φ)/2, z2 = sinh θ2ei (ψ+φ)/2 are the elements of the first col-
umn of matrix Z, (2.46), andθ, φ, andψ are the analogs of the Euler angles;
z2 = −z1, z1 = z2. The spin projection operators acting in the space of the func-
tions on the groupf (x, z) have the form

Ŝ
µ = 1

2
(zγ µ∂z− ∗z∗γ µ∂∗z), z= (z1 z2), ∂z = (∂/∂z1∂/∂z2)T

Ŝ
µ

R = −
1

2

(
χ
∗
γ µ∂χ − ∗χγ µ∂ ∗χ

)
, χ = (z1 ∗z2̇),

∂χ =
(
∂/∂z1∂/∂

∗
z2̇)T

, (4.13)
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whereγ µ are three-dimensionalγ -matrices,

γ µ = (σ3, iσ2,−iσ1), γ µγ ν = ηµν − i εµνργρ. (4.14)

Note that a nonequivalent set ofγ -matrices,γ µγ ν = ηµν + i εµνργρ , is used in
some papers. In terms of the Euler angles, we obtainŜ0 = −i ∂/∂φ, Ŝ0

R = i ∂/∂ψ .
The sets of commuting operators are the same as in the Euclidean case.

In consequence of the identityσ1

∗
Uσ1 = U , one can show that the matrixσ1

is the invariant symmetric tensor converting dotted and undotted indices,
∗
zα= (σ1)α̇α

∗
zα̇ . (4.15)

According to (2.47), the invariant tensorσµαα̇ connects a vector index and two
spinor indices of different types. On the other hand, using the identity mentioned
above, one can rewrite (2.47) in the formx′ν(σµσ1) = xµU (σµσ1)U T . Thus the
invariant tensor, which we denote as

σ̌µαβ = (σµσ1)αβ, σ̌µαβ = σ̌µβα, (4.16)

connects a vector index and two spinor indices of one type. Thus, one can write
the generatorŝS

µ
in the formŜ

µ = 1
2 σ̌

µ
αβ(zα∂β + ∗zα

∗
∂
β). An analog ofσµν-matrics

in 2+ 1 dimensions is (σµν)αβ = εµνλσ̌λαβ . Raising one of the spinor indices of
σ̌µαβ , we obtain two sets of three-dimensionalγ -matrices differing only by the
signs ofγ 0 andγ 2.

Similar to the Euclidean case, there are two standard realizations of the repre-
sentation spaces, corresponding to eigenvaluesn = ±2Sandn = 0 of the operator

Ŝ
R
3 .

The first realization is the space of analytic (n = −2S) functions f (x, z) or
antianalytic (n = 2S) functions f (x,

∗
z) of two complex variablesz1, z2, |z2|2−

|z1|2 = 1, that is, the space of functions of two-component spinors. The eigen-
functions of Ŝµ Ŝ

µ
are homogeneous functions of degree 2S in z. According to

(4.3), we haveŜ0
R = −(z1∂/∂z1+ z2∂/∂z2) for the space of analytic functions

and Ŝ
0
R =

∗
z1̇∂/∂

∗
z1̇ + ∗z2̇∂/∂

∗
z2̇ for the space of antianalytic functions. The eigen-

functions ofŜµ Ŝ
µ

in these spaces are also eigenfunctions ofŜ0
R with eigenvalues

n = ∓2S, respectively.

The second realization is the space of eigenfunctions ofŜ
0
R with zero eigen-

value. It is the space of functions of five real parameters on the manifold

R3× CD1, dµ = (2π )−1d3x sinhθ dθ dφ,

whereCD1 ∼ SU(1, 1)/U (1) is a complex disk. These functions do not depend
on the angleψ .

We recall some facts from the representation theory ofSU(1, 1). For finite-
dimensional nonunitary irrepsT0

S of the 2+ 1 Lorentz groupSU(1, 1)∼ SO(2, 1),
the spin projections (the eigenvalue of̂S0) can be only integer or half-integer,
s= −S, . . . , S, whereS≥ 0. However, in 2+ 1 dimensions, the Lorentz group
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does not have a compact non-Abelian subgroup. Therefore, there are infinite-
dimensional unitary representations corresponding to fractionalS. These repre-
sentations are multivalued representations ofSU(1, 1). For single-valued repre-
sentations ofSU(1, 1), the spin projections can be only integer or half-integer
[for SO(2, 1) only integer].

The representations of discrete series correspond toS< −1/2. Irreps of the
positive discrete seriesT+S are bounded by the lowest weights= −S, irreps of the
negative discrete seriesT−S are bounded by the highest weights= S, and irreps of
the principal series correspond toS= −1/2+ iλ and can be bounded by highest
(lowest) weight only forS= −1/2. For other irreps of the principal series, the
spectrum ofs is not bounded. Supplementary series correspond to−1/2< S< 0
and are characterized by a nonlocal scalar product.

The weight diagrams of series on the planeS, s are given visually in Gitman
and Shelepin (1997) and Wybourne (1974).

Thus, there are only two possibilities for the description of a particle with
fractional spin by means of unitary irreps ofSU(1, 1) with local scalar product.
The first corresponds to the discrete or principal series irreps bounded by lowest
(highest) weight,|s| ≥ |S| ≥ 1/2. The second corresponds to the principal series
irreps which are not bounded.

Unitary irreps of discrete series are used for the description of anyons (Cort´es
and Plyushchay, 1994; Gitman and Shelepin, 1997; Jackiw and Nair, 1991;
Plyushchay, 1992). Corresponding unitary infinite-component representations of
M(2, 1) were constructed (Cort´es and Plyushchay, 1994; Jackiw and Nair, 1991;
Plyushchay, 1992) in the space of functions ofxµ and the complex variable
z= z1/z2, that is, on the coset spaceM(2/1)/U (1). It was shown that RWE asso-
ciated with irreps of the discrete series have solutions only with a definite sign of
the energy. Thus, the mentioned RWE are analogs of Majorana equations in 3+ 1
dimensions; this aspect is considered in more detail in Cort´es and Plyushchay
(1994). Various formulations of the higher spin theory based on finite-component
representations were considered, in particular, in Deser and Kay (1983), Deser
(1984), Aragone and Deser (1984), Gitman and Tyutin (1997), and Vasiliev and
Tyutin (1997).

4.3. Relativistic Wave Equations in 2+ 1 Dimensions

Let us fix the eigenvalues of the Casimir operators of the Poincar´e group and
of the spin Lorentz subgroup:

p̂2 f (x, z) = m2 f (x, z), (4.17)

p̂µ Ŝ
µ

f (x, z) = Kf (x, z), (4.18)

Ŝµ Ŝ
µ

f (x, z) = S(S+ 1) f (x, z). (4.19)

Below we will call the operator̂Sµ Ŝ
µ

the operator of the Lorentz spin square.
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Equations (4.17) and (4.18) define a subrepresentation of the left GRR of
M(2, 1), which is characterized by massm, Lorentz spinS, and the eigenvalue
K of the Lubanski–Pauli operator. Form= 0, we supposeK = 0, which is true
for irreps with a finite number of spinning degrees of freedom. The general cases
for m= 0 and form imaginary were discussed in Binegar (1982) and Gitman and
Shelepin (1997).

Possible values ofK can be easily described in the massive case. Here we
can use a rest frame wherep̂µ Ŝµ = Ŝ0msignp0. Thus,K = sm= s0m for p0 > 0
andK = sm= −s0m for p0 < 0, wheres0 is the eigenvalue of̂S0. The spectrum
of Ŝ0 depends on the representation of the Lorentz group.

The variables labels irreps of the groupM(2, 1) and can take both positive
and negative values. Thus, there exits an analogy with massless particles in 3+ 1
dimensions characterized by helicity. In both cases,SO(2) is the little group, and
single-valued irreps ofSO(2) are labeled by integer number 2s. [It is a particular
case of the connection between the massive fields ind dimensions and massless
fields in d + 1 dimensions (Aragoneet al., 1987; Vasiliev and Tyutin, 1997).
Therefore, we will calls the helicity and|s| the spin.

Corresponding to (2.61), space reflection reduces to rotation byπ around the
axisx0 and convertsZ to (Z†)−1 = σ3Zσ3, or z1→ z1, z2→−z2. The operators
p̂0, Ŝ0 do not change. Thus, distinct from the (3+ 1)-dimensional case, space
reflection leaves helicity unaltered.

Fixing S in (4.19), we pass to the space of homogeneous functions of degree
2Sin z1, z2. According to the sign ofS, below we will consider two possible choices
of SU(1, 1) irreps bounded either on both sides or on one side, respectively.

Finite-dimensional nonunitary irrepsT0
S of SU(1, 1) are labeled by positive

integer or half-integerS. The basis in the representation space is formed by poly-
nomials of power 2S in z; see (A2). We denote corresponding representations of
M(2, 1) asT0

m,s.
Infinite-dimensional unitary irrepsT−S (T+S ) of SU(1, 1) are labeled by nega-

tive S< −1/2 and are bounded by the highest (lowest) weight. The basis in the
representation space is formed by quasipolynomials of power 2S in z; see (A3).
We denote corresponding representations ofM(2, 1) asT−m,s(T

+
m,s).

One can represent the functionf (x, z) in the form

f (x, z) = φ(z)ψ(x), (4.20)

whereφ(z) is a line composed of the basis elementsφn(z) of the corresponding
SU(1, 1) representation, andψ(x) is a column composed of the coefficients in
the decomposition over this basis. The action of the differential operatorsŜ

µ
on a

function f (x, z) may be presented in terms of matrices

Ŝ
µ

f (x, z) = φn(z)(Sµ)n′
n ψn′ (x), (4.21)

whereSµ areSU(1, 1) generators in the representationTS [see Appendix A and
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also Gitman and Shelepin (1997). They obey the commutation relations of the
SU(1, 1) group [Sµ, Sν ] = −i εµνηSη.

For fixedS in the matrix representation, Eqs. (4.17) and (4.18) have the form

( p̂2−m2)ψ(x) = 0, (4.22)(
p̂µSµ − sm

)
ψ(x) = 0, (4.23)

According to (4.23),

ψ†(x)
(
S†µ

←
p̂µ + sm

) = 0.

It follows from the explicit expressions (A4) that forT0
m,s the relationS†µ = 0Sµ0,

where the relations (0)nn′ = (−1)nδnn′ and02 = 1 hold. ForT+m,s and T−m,s, the
matricesSµ are Hermitian,S†µ = Sµ, according to (A5). Let us introduce the
notation

ψ̄ = ψ†0 for T0
m,s,

ψ̄ = ψ† for T+m,s, T
−
m,s.

The functionψ̄(x) obeys the equation

ψ̄(x)(Sµ
←
p̂µ + sm) = 0. (4.24)

As a consequence of the relationsS†µ = 0Sµ0 and (Sµ)† = −(−1)δ0µSµ,
we obtain that for irrepT0

m,s finite, the transformation matrices obey the equation
0T†(g)0 = T−1(g). Therefore,ψ̄(x)ψ(x) is a scalar density, and one can define
a scalar product in the space of columns

(ψ ′(x), ψ(x)) =
∫
ψ̄
′(x)ψ(x) d3x. (4.25)

The scalar density is positive definite forT+m,s andT−m,s, in contrast to the case of
T0

m,s.
As a consequence of (4.23) and (4.24), the continuity equation holds,

∂µ j µ = 0, j µ = ψ̄Sµψ. (4.26)

Together with the current vectorj µ, by analogy with the four-dimensional
case (Gel’fandet al., 1963), one can associate with the linear equation (4.23) the
energy-momentum tensorTµν and the energy densityW = −T00:

Tµν = Im

(
Sµ
∂ψ

∂xν
, ψ

)
, W = −T00 = −Im

(
S0 ∂ψ

∂x0
, ψ

)
. (4.27)

If the matrix S0 is diagonall, then the positiveness ofW(x) is equivalent to the
requirement that

(S0ψ, S0ψ) ≥ 0 (4.28)
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for all vectorsψ (Gel’fandet al., 1963). In particular, forT+m,s andT−m,s the relation
(S0ψ, S0ψ) = ψ†S0S0ψ ≥ 0 holds, and the energy density is positive definite.

There are two cases when Eq. (4.22) is the consequence of (4.23). Indeed,
multiplying Eq. (4.18) byp̂µSµ +ms, one gets

( p̂µSµ +ms)( p̂νSν −ms)ψ(x) =
(

1

2
p̂µ p̂ν [S

µ, Sν ]+ −m2s2

)
ψ(x) = 0.

(4.29)

In the particular caseS= 1/2, we haves= ±1/2, Sµ = γ µ/2, and (4.29) is
merely the Klein–Gordon equation (4.22). In the general case, the matricesSµ

are notγ -matrices in higher dimensions, and the squared equation (4.29) does not
coincide with the Klein–Gordon equation (4.22). Using the rest frame, one can
show that Eq. (4.22) follows from (4.23) also in the case of the vector representa-
tion S= 1, s= ±1. In the other cases, for the identification of the irrep ofM(2, 1),
it is necessary to use both equations of the system (4.22), (4.23). Notice that an-
other approach to the description of fields with fixed spin and mass was suggested
in Plyushchay (1997), and this approach is based on the system of spinor linear
equations.

It is naturaly to connect the spin value with the highest (lowest) weight of the
irrep of the Lorentz group,s= ±S. This means that up to a sign (plus forp0 > 0,
minus forp0 < 0),s is equal to the maximal or minimal eigenvalue of the operator

Ŝ
0

in the representationTS of the Lorentz group. According to (4.17)–(4.19), in
this case, the functionsf (x, z) obey

p̂2 f (x, z) = m2 f (x, z), (4.30)

p̂µ Ŝ
µ

f (x, z) = msf(x, z), s= ±S, (4.31)

Ŝµ Ŝ
µ

f (x, z) = S(S+ 1) f (x, z). (4.32)

In the framework of the system (4.30)–(4.32),there are two possibilities to
describe one and the same spin:

1. Equations forf (x, z) = φ(z)ψ(x), whereφ(z) transforms under the finite-
dimensional nonunitary irrep of the Lorentz group.

2. Equations forf (x, z) = φ(z)ψ(x), whereφ(z) transform under the infinite-
dimensional unitary irrep of the Lorentz group. These equations allow us
to describe also particles with fractional spin (anyons).

Case 1. First, consider the Poincar´e group representationsT0
m,s associated

with finite-dimensional nonunitary irrepsof SU(1, 1). In this case,S has to
be positive, integer or half-integer. In the rest frame, the solutions of the sys-
tem (4.30)–(4.32) in the space of analytic functions (polynomials of power 2S
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in z1, z2) are

s = S> 0: f (x, z) = C1(z1)Seimx0 + C2(z2)Se−imx0
, (4.33)

s = −S< 0: f (x, z) = C3(z1)Se−imx0 + C4(z2)Seimx0
. (4.34)

For unique mass and spin, there exist four independent components differing in
the signs ofp0 ands, which correspond to four irreps ofM(2, 1). The separation
by the sign of the helicitys is absolute since these states are solutions of different
equations. But states with different sign ofp0 are solutions of one and the same
equation. Hence, the energy spectrum of solutions is not bounded below or above.

In the space of antianalytic functions (polynomials of power 2S in
∗
z1̇,
∗
z2̇), the

solutions of the system (4.30)–(4.32) are

s = S> 0: f (x,
∗
z) = C1(

∗
z1̇)Se−imx0 + C2(

∗
z2̇)Seimx0

,

s = −S< 0: f (x,
∗
z) = C3(

∗
z1̇)Seimx0 + C4(

∗
z2̇)Se−imx0

.

These solutions are connected with the previous case (4.33), (4.34) by a charge
conjugation (2.63) and therefore may be treated as the solutions describing an-
tiparticles.

The wave function (4.33) corresponding to the helicitys= −Shas the form
C(z2)2Seip0x0

, p0 = m, in the rest frame. Acting on it by finite transformations,
we get a solution in the form of the plane wave, which is characterized by the
momentump:

P = UP0U
†, P0 = mI, Z = UZ0, Z0 = (z1 z2)T ,

f (x, z) = (2π )−3/2(z2u1− z1u2)2Seipx. (4.35)

The state withP0 = mIhas the stationary subgroupU (1), and we can take elements
u1 = cosh(θ/2) andu2 = sinh(θ/2)eiω of the first line of the matrixU , which
depends on two parameters only. Thus,p0 = E = mcoshθ and−p1+ ip2 =
msinhθ eiω, and one can express the parametersu1 andu2 via the momentum
p: (

u1

u2

)
= 1√

2m(E +m)

(
E +m
−p1+ ip2

)
. (4.36)

The 2S+ 1 componentsψn(x) are the coefficients in the decomposition of the
function (4.35) over the basisφn(z), f (x, z) = φn(z)ψn(x), n = 0, 1, . . . ,2S:

ψn(x) = (2π )−3/2
(
Cn

2S

)1/2
(u1)2S−n(−u2)neipx

= (2π )−3/2
(
Cn

2S

)1/2 (E +m)2S−n(p1− ip2)n

(2m(E +m))S
eipx. (4.37)
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In the particular caseS= 1/2, we get

ψ(x) = 1√
2m(E −m)

(
p2− i p1

E +m

)
eipx.

Considering the system (4.31)–(4.32) without the condition of mass irre-
ducibility (4.30), it is easy to see that the charge densityj 0 = ψ†0S0ψ is positive
definite only forS= 1/2, and the energy density−T00 is positive definite only
for S= 1. The scalar densitȳψψ = ψ†0ψ is not positive definite.

Let us show that for particles with half-integer spin described by the system
(4.30)–(4.32), the charge densityj 0 of (4.26) is positive definite. In the rest frame,
solutions of the system (4.30)–(4.32) have only two components (labeled bys0 =
±S), which we denote asψS(x) andψ−S(x). For half-integer spin, the inequality
j 0 = ψ†0S0ψ = S(|ψS|2+ |ψ − s|2) > 0 holds. ForS≥ 3/2, from the explicit
form of the matricesS1 and S2 of (A4), one can obtain that in the rest frame,
j 1 = j 2 = 0, and therefore the square of the current vector (j 0)2− ( j 1)2− ( j 2)2

is positive. Therefore,j 0 > 0 for any plane wave.
Thus, the charge densityj 0 is positive definite for half-integer-spin particles

described by representationsT0
m,s of M(2, 1). The scalar density and the energy

density are proportional toψ†0ψ = |ψS|2− |ψ−S|2 in the rest frame and therefore
are indefinite.

Let us consider now particles with integer spin. In the rest frame, the solutions
of the system also have only two components,ψS(x) andψ−S(x), (S0ψ, S0ψ) =
ψ†0S0S0ψ = S2(|ψS|2+ |ψ−S|2) > 0. Thus, the energy density is positive def-
inite for integer-spin particles described by representationsT0

m,s of M(2, 1). The
charge density is proportional to|ψS|2− |ψ−S|2 in the rest frame and therefore is
indefinite.

Consider two particular cases explicitly. ForS= 1/2, the decomposition
(4.20) has the form

f (x, z) = z1ψ1(x)+ z2ψ2(x), ψ ′(x′) = U−1ψ(x), ψ(x) = (ψ1(x)ψ2(x))T.

(4.38)

Taking into account the relationU−1 = σ3U †σ3, which is valued for theSU(1, 1)
matrices, we get the transformation law for the lineψ̄ = ψ†σ3, ψ̄

′(x′) = ψ̄(x)U .
The productψ̄(x)ψ(x) = |ψ1(x)|2− |ψ2(x)|2 is the scalar density.

Thus, in the case under consideration, we have two equivalent descriptions,
one in terms of functions (4.38) and the other in terms of linesψ̄(x) or columns
ψ(x). One can find the action of the operatorsŜ

µ
in the latter representation, and

Eq. (4.23) can be rewritten in the form of the 2+ 1 Dirac equation

Ŝ
µ
ψ(x) = 1

2
γ µψ(x), ( p̂µγ

µ ∓m)ψ(x) = 0, (4.39)

where minus corresponds tos= 1/2, plus corresponds tos= −1/2, andγ µ are
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2× 2 γ -matrices (4.14) in 2+ 1 dimensions. The functionsψ = (ψ1 0)T and

ψ = (0ψ2)T are eigenvectors of the operatorŜ
0

with the eigenvalues±1/2.
Sometimes two equations fors= ±1/2 are written as one equation for the

four-component reducible representation (Gitman and Tyutin, 1997; Vshivtsev
et al., 1998), (̂pµ0

µ −m)9(x) = 0, where0µ = diag(γ µ,−γ µ) which corre-
sponds to the simultaneous consideration of particles with opposite helicities.

For S= 1, the decomposition (4.20) has the form

f (x, z) = ψ11(x)(z1)2+ ψ12(x)z1z2+ ψ22(x)(z2)2, (4.40)

whereψ(x) = (ψ11(x)ψ12(x)/
√

2ψ22(x))T is subjected to Eq. (4.23) with the
matrices

S0 =
1 0 0

0 0 0
0 0 −1

, S1 = − 1√
2

0 −1 0
1 0 −1
0 1 0

 ,
S2 = − i√

2

0 1 0
1 0 1
0 1 0

 . (4.41)

If, instead of the cyclic componentsψαβ(x), one introduces new (Cartesian) compo-
nentsFµ = σ̌ αβµ ψαβ(x), where ˇσµαβ is defined in (4.16)F0 = −2ψ12,F1 = ψ11+
ψ22,F2 = i (ψ22− ψ11), then Eq. (4.23) takes the form (Gitman and Shelepin,
1997)

∂µε
µνηFη − smFν = 0. (4.42)

A transversality condition follows from (4.42),∂µFµ = 0. One can see now that
Eq. (4.42) are in fact field equations of the so-called “self-dual” free massive field
theory (Townsendet al., 1984). As remarked in Deser and Jackiw (1984), this
theory is equivalent to the topologically massive gauge theory with the Chern–
Simons term (Deseret al., 1982). Indeed, the transversality condition allows us to
introduce gauge potentials.Aµ, namely a transverse vector can be written as a curl
Fµ = εµνλ∂νAλ = εµνλFνλ/2, whereFνλ = ∂νAλ − ∂λAν is the field strength.
Thus,Fµ appears to be the dual field strength, which is a three-component vector
in 2+ 1 dimensions. Then (4.42) implies the following forFµν :

∂µFµν − sm

2
εναβFαβ = 0,

which represents the field equations of the topologically massive gauge theory.
To describe a neutral spin-1 particle coinciding with its antiparticle, we con-

sider the function

f (x, z) = ψ11(x)z1∗z1 + ψ12(x)(z1∗z2 + ∗z1z2)/2+ ψ22(x)z2∗z2, (4.43)
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where we have used (4.15) for the conversion to undotted indices. The spin part
of the function (4.43) depends not on three angles as in the case (4.40), but on
two angles only. This function is an eigenfunction of the operatorŜ

3
R with zero

eigenvalue. Substituting (4.43) into (4.31), we again obtain Eq. (4.42).
Case 2. Consider now Poincar´e group representationsT+m,s and T−m,s asso-

ciated withunitary infinite-dimensional irrepsof SU(1, 1) with highest (lowest)
weight. In this case,Scan be noninteger,S< −1/2 (discrete series) orS= −1/2
(principal series). Eigenvalues ofŜ0 can take only positive values for discrete pos-
itive series,s0 = −S+ n, and only negative valuses for negative one,s0 = S− n,
wheren = 0, 1, 2, . . . .

Let us consider the energy spectrum of the system (4.30)–(4.32) form 6= 0.
According to the first equation,p0 = ±m. The second equation ensures the relation
between spectra of the operatorsp̂0 andŜ0,

p0s0 = ms. (4.44)

For representationsT0
m,s, which correspond to finite-dimensional irrepsT0

S of the
Lorentz group, the value ofs0 can be positive or negative. Therefore, for any
s, there exist both positive-frequency and negative-frequency solutions, and the
representationsT0

m,s split into two irreps characterized by signp0 = ±1.
For unitary SU(1, 1) irreps with highest (lowest) weight, the spectrum of

Ŝ0 has a definite sign. ForT+S , which act in the space of analytic functions, the
spectrum of the operator̂S0 is positive, and forT−S , which act in the space of
antianalytic functions, it is negative. Therefore, the sign of energyp0 coincides
with the sign ofs for T+S and the signs ofp0 ands are opposite forT−S . Thus,T+m,s
andT−m,s are irreps ofM(2, 1).

As in the case of the representationsT0
m,s, for unique mass and spin there are

four states distinguished by the signs ofp0 ands. In the rest frame, there are two
solutions of the system in the space of analytic functions:

p0 > 0, s> 0: f (x, z) = (2π )−3/2(z2)Seimx0
, (4.45)

p0 < 0, s< 0: f (x, z) = (2π )−3/2(z2)Se−imx0
. (4.46)

The solutions are connected by time reflectionT ′ (2.62). In the space of antianalytic
functions, there are also two solutions:

p0 > 0, s< 0: f (x,
∗
z) = (2π )−3/2(

∗
z2̇)Seimx0

(4.47)

p0 < 0, s> 0: f (x,
∗
z) = (2π )−3/2(

∗
z2̇)Se−imx0

. (4.48)

These solutions are connected, respectively, with (4.45) and (4.46) by Schwinger
time reversalTSch= CT′, which turns particles into antiparticles. Thus, there exist
four equations distinguished by the sign ofsand by the used functionalspace (irrep
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T+S orT−S of the Lorentz group), and any equation has solutions only with a definite
sign of p0.

In contrast to the case ofT0
m,s, where the energy spectrump0 is not bounded

both above and below, the energy spectrum has a definite sign. In any inertial frame,
the spectrum is bounded below byp0 = m for the solutions (4.45) and (4.47) and
above byp0 = −m for the solutions (4.46) and (4.48).

For the unitary irreps ofM(2, 1) under consideration, which correspond to
the irreps of the discrete series of the Lorentz group, integration of the functions
(A3) in the invariant measure (4.12) gives∫ ∗

f S1
(x, z) f ′S2

(x, z) dµ(x, z) = δS1S2

∫ ∞∑
n=0

ψn(x)ψ ′n(x) d3x,

∫ ∗
f S1

(x, z) f ′S2
(x, z) dµ(z) = δS1S2ψ

†(x)ψ ′(x), (4.49)

In particular, the states (4.45)–(4.48) have the normδSS′δ(p− p′). For the principal
series,j = −1/2+ iλ, andδ j1 j2 in (4.49) is changed byδ(λ1− λ2). At the same
time, the integral over the spin space diverges for the representationsT0

m,s, which
correspond to finite-dimensional irreps of the Lorentz group.

Arbitrary plane wave solutions can be obtained by analogy with the above
case ofT0

m,s. For example, for the states (4.45), one can get the formula (4.37),
where nowCn

2S are the coefficients from (A3) andn = 0, 1, 2, . . . . The power
2S is negative, and the decompositionf (x, z) = φn(z)ψn(x) contains an infinite
number of terms.

Let us summarize some properties of the unitary irreps under consideration.
Irreps T+m,s and T−m,s of the Poincar´e group describe particles and antiparticles,
respectively. The charge densityj 0 = ψ†S0ψ is positive definite for particles
and negative definite for antiparticles. The energy density is positive definite in
both cases since (S0ψ, S0ψ) = ψ†S0S0ψ > 0. For the unitary irreps, the scalar
densityψ†ψ is also positive definite, in contrast to the finite-dimensional case. The
existence of positive-definite scalar density ensures the possibility of a probability
amplitude interpretation ofψ(x).

Thus, in 2+ 1 dimensions, the problem of the construction ofpositive-energy
RWEsis solved by the system (4.30)–(4.32) for the infinite-dimensional unitary
irrepsT+m,s (signs ofp0 ands are the same) orT−m,s (signs ofp0 ands are opposite)
characterized by the massm and the helicitys. These irreps of the Poincar´e group
are associated with irrepsT+S andT−S of the Lorentz group with lowest (highest)
weight. Charge conjugation, changing signs ofp0 ands0, leaves the helicitys
invariant and turnsT+m,s into T−m,s.

An interesting problem is to find an explicit form of the intertwining opera-
tor A for the unitary irrepsT+m,s, T

−
m,s and the representationT0

m,s labeled by the
same massm and helicitys, but associated with finite-dimensional nonunitary
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irreps of the Lorentz group,AT0
m,s = (T+m,s⊕ T−m,s)A. The intertwining operator

is nonunitary and must be a function of the generators of right translations, since
other generators commute with the Lorentz spin square operatorŜµ Ŝ

µ
and cannot

change the representation of the spin Lorentz subgroup.
Notice that the 2+ 1 Dirac equation arises also in the case of unitary infinite-

dimensional irrepsT+S andT−S of the Lorentz group not as an equation for a true
wave function, but as an equation for spin-coherent state evolution. In this case,
the equation includes effective massms = |s/S|m, s= −S,−S+ 1, . . . (Gitman
and Shelepin, 1997).

Among the above RWE are those that describe particles with fractional real
spin. These equations are associated with unitary multivalued irreps of the Lorentz
group and can be used to describe anyons.

In spite of the fact that the number of independent polarization states for
a massive 2+ 1 particle is one, the vectors of the corresponding representation
space of irrepsT+m,s, T

−
m,s have an infinite number of components in the matrix

representation. Thus, thez-representation is more convenient in this case.

5. FOUR-DIMENSIONAL CASE

5.1. Field on the GroupM(3, 1)

The generators and the action of the left GRR on the functionsf (x, z) are
given by formulas (2.37) and (2.44). For spin projection operators, it is convenient

to use the three-dimensional vector notationŜk = 1
2εi jk Ŝ

i j
, B̂k = Ŝ0k. An explicit

calculation gives

Ŝk = 1

2
(zσk∂z − ∗z∗σ k∂∗z)+ · · · ,

B̂k = i

2
(zσk∂z + ∗z∗σ k∂∗z)+ · · · , z= (z1 z2), ∂z = (∂/∂z1 ∂/∂z2)T ; (5.1)

Ŝ
R
k = −

1

2
(χ
∗
σ k∂χ − ∗χσk∂ ∗χ )+ · · · ,

B̂R
k = −

i

2
(χ
∗
σ k∂χ + ∗χσk∂ ∗χ )+ · · · , χ = (z1 z1), ∂χ = (∂/∂z1 ∂/∂z1)T ; (5.2)

Dots in the formulas replace analogous expressions obtained by the substitutions
z→ z′ = (z1 z2), χ → χ ′ = (z2 z2).

Since detZ = 1, then any ofzα, zα can be expressed in terms of the other
three, for example,z2 = (1− z2z1)/z1. The invariant measure onR4× SL(2,C)
has the form (Gel’fandet al., 1966)

dµ(x, z) = (i /2)3 d4x d2z1 d2z2 d2z1 |z1|−2. (5.3)
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The functions on the Poincar´e group depend on 10 parameters, and corre-
spondingly there are 10 commuting operators (two Casimir operators, four left
generators, and four right generators).

Both the Poincar´e group and the spin Lorentz subgroup have two Casimir
operators:

p̂2 = p̂µp̂µ, Ŵ2 = ŴµŴ
µ, whereŴµ = 1

2
εµνρσ p̂ν Ĵρσ =

1

2
εµνρσ p̂ν Ŝρσ ,

(5.4)

1

2
Ŝµν Ŝ

µν = 1

2
Ŝ

R
µν Ŝ

µν

R = Ŝ2− B̂2,

1

16
εµνρσ Ŝµν Ŝρσ = 1

16
εµνρσ Ŝ

R
µν Ŝ

R
ρσ = ŜB̂. (5.5)

Let us consider a set of 10 commuting operators,

p̂µ, Ŵ
2, p̂Ŝ, Ŝ2− B̂2, ŜB̂, Ŝ

R
3 , B̂R

3 . (5.6)

This set consists of operators of momenta, the Lubanski–Pauli operatorŴ2, the
operatorp̂Ĵ = p̂Ŝ, which is proportional to the helicity, and four operators, which
are functions of the right generators. These four operators commute with the left
rotations and translations, and allow one to distinguish equivalent irreps in the
decomposition of GRR. In the rest frame,p̂Ŝ= 0, and the complete set of com-
muting operators can be obtained from (5.6) with the help of the replacement of
p̂Ŝ by Ŝ3.

Functions f (x, z) on the groupM(3, 1) are functions of four real variables
xµ and four complex variableszα, zα with the constraintz1z2− z2z1 = 1.

The space of functions on the Poincar´e group contains the subspace of analytic

functions f (x, z,
∗
z) of the elements of the Diracz-spinor

ZD = (zα,
∗
zα̇). (5.7)

Charge conjugation means the transition to the subspace of antianalytic functions
(i.e., analytic functions ofzα,

∗
zα̇).

According to (2.61), for the space inversion, we haveZ
P→ (Z−1)† or(

z1 z1

z2 z2

)
P→
(
− ∗z1̇

∗
z1̇

− ∗z2̇
∗
z2̇

)
, (5.8)

This transformation reverses the sign of the boost operatorsB̂k. It is easy to see
that, in contrast to charge conjugation, space inversion conserves the analyticity
(or antianalyticity) of functions ofZD.

Similar to the three-dimensional case [see (4.5)], eigenfunctions ofŜ
R
3 and

B̂R
3 differ only by a phase factor. Fixing eigenvalues of operatorsŜ

R
3 and B̂R

3 , one
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passes to the space of functions ofxµ and elements of the Majoranaz-spinor

ZM = (zα,
∗
zα̇), (5.9)

that is, the space of functions of eight real, independent variables on the manifold

R4× C2, dµ = d4x d2z1 d2z2. (5.10)

Thus, in this space we have eight commuting operators (two Casimir operators, four
operators distinguishing states inside the irrep, and two operators distinguishing
equivalent irreps). Notice that Kihlberg (1964) gives physical arguments for the
necessity of using at least eight variables in order to describe spinning particles. The
space reflection takes functions ofZM to functions ofZM = (zα,

∗
zα̇); as mentioned

above,zα andzα have the same transformation rule. Charge conjugation leave the
space of functions ofZM invariant.

Below we will consider the massive case characterized by symmetry with
respect to space reflection and therefore the space of the analytic functions of the
Diracz-spinorZD, unless otherwise stipulated. In this space, the action ofM(3, 1)
is given by

T(g) f (x, z, z) = f (g−1x, g−1z, g−1z),

(g−1x)µ = (3−1)µν xν, (g−1z)α = Uα
β zβ,

(g−1z)α̇ = (U−1)β̇α̇
∗
zβ̇ . (5.11)

Spin projection operators have the form

Ŝk = 1

2
(zσk∂z − ∗z∗σ k ∂∗z), B̂k = i

2
(zσk∂z + ∗z∗σ k ∂∗z). (5.12)

One can compose the combinationsM̂k,
ˆ̄Mk

M̂k = 1

2
(Ŝk − i B̂k) = zσk∂z, M̂+ = z1∂/∂z2, M̂− = z2∂/∂z1,

ˆ̄Mk = −1

2
(Ŝk + i B̂k) =∗z∗σ k ∂∗z,

ˆ̄M+ = ∗z1̇ ∂/∂
∗
z2̇, ˆ̄M− =∗z2̇ ∂/∂

∗
z1̇, (5.13)

such that [M̂i ,
ˆ̄Mk] = 0. For unitary representations of the Lorentz group,Ŝ

†
k =

Ŝk, B̂†k = B̂k, and these operators obey the relationM̂
†
k = ˆ̄Mk (for finite-dimen-

sional nonunitary irreps,̂S
†
k = Ŝk, B̂†k = −B̂k, andM̂

†
k = − ˆ̄Mk). Introducing spin

operators with spinor indices

M̂αβ = (σµν)αβ Ŝ
µν
, ˆ̄M α̇β̇ = (σ̄µν)α̇β̇ Ŝ

µν
, (5.14)

whereσµν andσ̄µν are defined in (B6), we obtain

Ŝ
µν = −1

2

[
(σµν)αβ M̂αβ + (σ̄ µν)α̇β̇ ˆ̄M α̇β̇

]
, (5.15)
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M̂αβ M̂
αβ = 2M̂2, ˆ̄M α̇β̇

ˆ̄M
α̇β̇ = 2 ˆ̄M

2
. (5.16)

In the space of analytic functions ofz,
∗
z, we have

M̂αβ = 1

2
(zα∂β + zβ∂α), ˆ̄M α̇β̇ =

1

2
(
∗
zα̇ ∂ β̇ +

∗
zβ̇ ∂ α̇). (5.17)

Taking into account that operatorŝMk and ˆ̄Mk are subjected to commutation
relations ofsu(2) algebra, we obtain the spectra of the Casimir operators of the
Lorentz subgroup:

Ŝ2− B̂2 = 2(M̂2+ ˆ̄M2) = 2 j1( j1+ 1)+ 2 j2( j2+ 1)= −1

2
(k2− ρ2− 4),

ŜB̂ = −i (M̂2− ˆ̄M2) = −i ( j1( j1+ 1)− j2( j2+ 1))= kρ, (5.18)

whereρ = −i ( j1+ j2+ 1) andk = j1− j2. Thus, irreps of the Lorentz group
SL(2,C) are labeled by the pair (j1, j2). It is convenient to label unitary irreps by
[k, ρ], where irreps [k, ρ] and [−k,−ρ] are equivalent (Barut and Raczka, 1977;
Gel’fandet al., 1966).

Notice that the formulas (5.11)–(5.18) are also valid if, using the substitution∗
zα̇→

∗
zα̇, we consider the functions of elements of the Majoranaz-spinorZM instead

of ZD.
The formulas of reduction on the compactSU(2) subgroup have the form

T( j1, j2) =
j1+ j2∑

j=| j1− j2|
Tj , T[k,ρ] =

∞∑
j=k

Tj (5.19)

for finite-dimensional nonunitary irreps and infinite-dimensional unitary irreps of
SL(2,C), respectively (Gel’fandet al., 1966). Analogous to the 2+ 1 case, there are
two types of Poincar´e group representations describing the same spins. These types
correspond to finite-dimensional and infinite-dimensional unitary representations
of the Lorentz group. In particular, one may choose (i)s= jmax= j1+ j2 for
nonunitary finite-dimensionalirreps (j1, j2) and (ii)s= jmin = j0 = | j1− j2| for
unitary infinite-dimensionalirreps [j0, p], where jmax and jmin are respectively the
maximal and minimalj in the decomposition (5.19) of an irrep of the Lorentz
group over irrepsTj of the compactSU(2) subgroup. Below we will study only
the case of finite-dimensional representations of the Lorentz group.

Consider the monomial basis

(z1)a(z2)b(
∗
z1)c(

∗
z2)d

in the space of functionsφ(z,
∗
z). The valuesj1 = (a+ b)/2 and j2 = (c+ d)/2

are conserved under the action of the generators (5.13). Therefore, the space of
the irrep (j1, j2) is the space of homogeneous analytic functions depending on
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two pairs of complex variables of power (2j1, 2 j2). We denote these functions as
φ j1 j2(z,

∗
z).

For finite-dimensional nonunitary irreps ofSL(2,C),a, b, c, andd are integer
nonnegative, thereforej1, j2 are integer or half-integer nonnegative numbers. One
can write functionsfs(x, z,

∗
z), which are polynomial of the power 2s= 2 j1+ 2 j2

in z,
∗
z, in the form

fs
(
x, z,

∗
z
) = ∑

j1+ j2=s

∑
m1,m2

ψ
m1m2
j1 j2

(x)ϕm1m2
j1 j2

(z,
∗
z), (5.20)

where the functions

ϕ
m1m2
j1 j2

(z,
∗
z) = N1/2(z1) j1+m1(z2) j1−m1(

∗
z1̇) j2+m2(

∗
z2̇) j2−m2, (5.21)

N = (2s)! [( j1+m1)! ( j1−m1)! ( j2+m2)! ( j2−m2)!]−1, (5.22)

form a basis of the irrep of the Lorentz group. This basis corresponds to the
chiral representation (see Appendix B). On the other hand, one can write the
decomposition of the same function in terms of the symmetric multispinors

ψ
β̇1···β̇2 j2
α1···α2 j1

(x) = ψβ̇(1···β̇2 j2)
α(1···α2 j1) (x)

as follows:

fs
(
x, z,

∗
z
) = ∑

j1+ j2=s

f j1 j2(x, z,
∗
z),

f j1 j2(x, z,
∗
z) = ψβ̇1···β̇2 j2

α1···α2 j1
(x)zα1 · · · zα2 j1

∗
zβ̇1
· · · ∗zβ̇2 j2

. (5.23)

Notice that similar generating functions summed over alls have been used in
Vasiliev (1992, 1996) to describe massless fields. Comparing decompositions
(5.20) and (5.23), we obtain the relation

N1/2ψ
m1m2
j1 j2

(x) = ψ

j2+m2︷ ︸︸ ︷
1̇ . . . 1̇

1 . . .1︸ ︷︷ ︸
j1+m1

j2−m2︷ ︸︸ ︷
2̇ . . . 2̇

2 . . .2︸ ︷︷ ︸
j1−m1

(x). (5.24)

Using the invariant tensorσµα̇α and spinorszα,
∗
zα̇, ∂α = ∂/∂zα, ∂α̇ = ∂/∂∗zα̇,

it is possible to construct just four vectors:

V̂µ

12 =
1

2
σ̄ µα̇α

∗
zα̇ ∂α, V̂µ

21 =
1

2
σ
µ
αα̇zα∂α̇, (5.25)

V̂µ

11 =
1

2
σ
µ
αα̇zα

∗
zα̇, V̂µ

22 =
1

2
σ
µ
αα̇∂

α∂α̇. (5.26)

These operators are not functions of generators ofM(3, 1) and relate irreps with
different (j1, j2); as we will see below, they play an important role in the theory
of RWE.
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5.2. Relativistic Wave Equations Invariant Under the Proper Poincaré Group

Let us fix eigenvalues of the Casimir operators of the Poincar´e group and of
the Lorentz subgroup:

p̂2 f (x, z) = m2 f (x, z), (5.27)

Ŵ2 f (x, z) = −s(s+ 1)m2 f (x, z), (5.28)

M̂2 f (x, z) = j1( j1+ 1) f (x, z), (5.29)

ˆ̄M2 f (x, z) = j2( j2+ 1) f (x, z), (5.30)

The spectrum (5.28) of the operatorŴ2 corresponds to the consideration of
massive spin-s particles and massless particles with discrete spin. [For tachyons
and massless particles with continuous spin spectrum different from (5.28), see
Barut and Raczka (1977) and Mackey (1968)]. As a consequence of the last two
equations (recall that we consider the space of analytic functions ofz,

∗
z), we obtain

that eigenvalues of the operatorsŜR
3 and B̂R

3 belonging to the complete set (5.6)
are also fixed,

ŜR
3 f (x, z,

∗
z) = −( j1+ j2) f (x, z,

∗
z),

iB̂R
3 f (x, z,

∗
z) = ( j1− j2) f (x, z,

∗
z). (5.31)

Equations (5.27)–(5.30) define the reducible representation of the proper Poincar´e
groupM(3, 1). This representation splits into two representations labeled by the
sign of p0 and are irreducible form 6= 0.

Nonequivalent representations are distinguished by eigenvalues of the Casimir
operatorsp̂2 andŴ2 and by the sign ofp0 [see also Barut and Raczka (1977),
Mackey (1968), and Kim and Noz (1986)]. The case of zero eigenvalues of the
operatorsp̂2 andŴ2 is an exception. This case corresponds to massless particles
with discrete spin, and nonequivalent irreps are labeled by the helicity and by the
sign of p0. On the other hand, one can introduce a chirality asλ = j1− j2 (or as
the difference in the numbers of dotted and undotted indices). The explicit form
of the chirality operator in the space of analytic functions ofz,

∗
z is given by [see

(B4)]

0̂5 = 1

2

(
zα∂α− ∗zα̇ ∂ α̇

)
. (5.32)

In the massless case, helicity is equal to chirality up to sign (Barut and Raczka,
1977). In the massive case, irreps of the proper Poincar´e group, which are labeled
by the samem, s, and signp0 but by different chiralities, are equivalent. Thus, for
fixed massm and spins= j1+ j2, the system (5.27)–(5.30) has 2s+ 1 solutions
differing byλ = j1− j2.
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Using (5.15), we can rewrite the Lubanski–Pauli vector (5.4) and the Casimir
operatorŴ2 in the form

Ŵµ = 1

2
εµνρσ p̂ν Ŝρσ = 1

2
i p̂ν
[
(σµν)αβ M̂

αβ − (σ̄ µν)α̇β̇
ˆ̄M
α̇β̇]
, (5.33)

Ŵ2 = − p̂2(M̂2+ ˆ̄M2)− 1

2
p̂µ p̂ν(σ

µρ)αβ
(
σ̄ νρ
)
α̇β̇

M̂
αβ ˆ̄M

α̇β̇
. (5.34)

Taking into account the explicit form of the spin operators (5.17) and the symmetry
of (σµν)αβ and (σ̄ µν)α̇β̇ with respect to the permutation of spinor indices, we rewrite
the last relation as

Ŵ2 = − p̂2(M̂ + ˆ̄M2)− 2p̂µ p̂ν(σ
µρ)αβ

(
σ̄ νρ
)
α̇β̇

zα∂β
∗
zα̇ ∂ β̇ .

Finally, using the identity

4(σµρ)αβ
(
σ̄ νρ
)
α̇β̇
= −ηµνεαβεα̇β̇ + σµαα̇σ νββ̇ + σ ναα̇σµββ̇

and the condition of mass irreducibility (5.27), we obtain

Ŵ2 = −m2( j1+ j2)( j1+ j2+ 1)+ 4p̂µV̂µ

11 p̂ν V̂
ν
22, (5.35)

where the operatorŝVµ

11 andV̂µ

22 are defined in (5.26). Therefore, fors= j1+ j2,
the necessary and sufficient condition of spin irreducibility is

p̂µV̂µ

11 p̂ν V̂
ν
22 f (x, z,

∗
z) = 0. (5.36)

For the representations (s0) and (0s), we haveV̂µ

22 f (x, z,
∗
z) = 0 and the condition

(5.36) is fulfilled identically. In the general case, observing that in the momentum
representation the action of the operatorV̂µ

11 p̂µ reduces to multiplication by the
numberpµσ

µ
αα̇zαzα̇, we come to thealternative conditions

p̂µV̂µ

11 = 0, (5.37)

p̂ν V̂
ν
22 f (x, z,

∗
z) = 0. (5.38)

The first condition connects the components of momentumpµ and complex
spin variablesqµ = σµαα̇zα

∗
zα̇/2,qµqµ = 0. Thus, we have the space of functions

of two four-vectorspµ,qµ, which are subject to the invariant constraints

p2 = m2, pµqµ = 0, q2 = 0. (5.39)

According to (5.39), in the rest frame, we getz1 ∗z1 + z2 ∗z2= 0. A similar approach
to constructing wave functions describing elementary particles was suggested by
Wigner (1963), who restricted discussion to particles of integer spin and realqµ
with constraintsp2 = m2, pµqµ = 0,q2 = −1. Different generalizations of his
approach (Wigner, 1963) have been considered (Biedenharnet al., 1988; Hasiewicz
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and Siemion, 1992; Kim and Wigner, 1987; Kuzenkoet al., 1995; Lyakhovichet al.,
1996).

The second condition (5.38) does not affect spin variables and can be written in

terms ofψ(x). For fixedj1, j2, using the decomposition (5.23) off (x, z,
∗
z) in terms

of multispinors and also the relation∂αψα1α2...αk z
α(1zα2 . . . zαk) = δα1

α ψα1α2...αk z
α(2 . . .

zαk) , one can rewrite the system

( p̂2−m2) f j1 j2(x, z) = 0, p̂µσ
µ
αα̇∂

α∂α̇ f j1 j2(x, z) = 0 (5.40)

in the form

( p̂2−m2)ψα1...αkα̇1...α̇l (x) = 0, (5.41)

∂α̇αψαα1...αk−1α̇α̇1...α̇l−1(x) = 0, (5.42)

where∂α̇α = ∂µσ̄ µα̇α, k = 2 j1, l = 2 j2. These equations describe a particle with
unique massm and spins= j1+ j2. The subsidiary condition (5.42) is necessary
to exclude components corresponding to other possible spinss, | j1− j2| ≤ s<
j1+ j2; see (5.19).

On the other hand, in order to describe spins, one can use representations
( j1 j2), j1+ j2 6= s. In this case, according to (5.35), the condition (5.42) should
be replaced by the new subsidiary condition

∂ββ̇∂
α̇αψαα1...αk−1α̇α̇1...α̇l−1(x) = −m2[( j1+ j2)( j1+ j2+ 1)

−s(s+ 1)]ψβα1...αk−1β̇α̇1...α̇l−1
(x). (5.43)

Note that an approach using this general subsidiary condition was not considered
earlier.

Passing on to vector indices, one can see that for integer spins and irreps (s
2

s
2),

Eqs. (5.41) and (5.42) take the form

( p̂2−m2)8µ1µ2...µs(x) = 0, ∂µ8µµ2...µs(x) = 0, 8µ
µµ2...µs

(x) = 0, (5.44)

where

8µ1µ2...µs(x) = (−1)s2−sσ̄ α̇1α1
µ1
· · · σ̄ αsαs

µs
ψα1...αsα̇1...α̇s(x).

Equations (5.44), known also as the massive tensor field equations or Fierz–Pauli
equations, are used most often to describe integer spins.

For half-integer spins and irreps (2s±1
4

2s∓1
4 ), after passage to vector indices,

the subsidiary conditions (5.42) take the form

∂µ9µµ2...µnα(x) = 0, σ̄ µα̇α9µµ2...µnα(x) = 0, 9µ
µµ2...µnα

(x) = 0,

∂µ9µµ2...µnα̇(x) = 0, σ
µ
αα̇9

α̇
µµ2...µn

(x) = 0, 9
µ
µµ2...µnα̇

(x) = 0, (5.45)

wheren = (2s− 1)/2.
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5.3. Relativistic Wave Equations Invariant Under the Improper
Poincaré Group

The improper Poincar´e group includes continuous transformations of the
proper group and space reflection operator (parity operator)Î P. According to
(2.61) and (5.8), this operator obeys the conditionÎ

2
P = 1̂ and the commutation

relations

[ Î P, p̂0] = [ Î P, p̂2] = [ Î P, Ŵ
2] = [ Î P, Ŝk] = [ Î P, Ŝ

R
k ] = 0, (5.46)

[ Î P, p̂k]+ = [ Î P, B̂k]+ = [ Î P, B̂
R
k ]+ = 0. (5.47)

States with definite total parity are defined as eigenfunctions of the operatorÎ P:

Î P f (x, z) = ± f (x, z). (5.48)

For m> 0, irreps of the improper Poincar´e group are labeled by an orbit
defining the massm and the sign ofp0 and by the irrep of the little groupO(3)
defining spins and intrinsic parity (Barut and Raczka, 1977; Mackey, 1968; Tung,
1985). In the rest frame, the intrinsic parity coincides with the total.

The Casimir operators of the Lorentz group do not commute with the parity
operator, [̂I P, M̂2] = ˆ̄M2, [ Î P,

ˆ̄M2] = M̂2, and parity transformation combine two
equivalent irreps labeled by Lorentz indices (j1, j2) and (j2, j1) (by chiralities±λ)
of the proper Poincar´e group into one representation of the improper group. The
latter representation is reductible and splits into two irreps differing in intrinsic
parity η = ±1. Thus, we cannot use the operatorsM̂2, ˆ̄M2 to select invariant
subspaces, and instead of the set of eight commuting operators

p̂µ, Ŵ
2, p̂Ŝ, M̂2, ˆ̄M2 (5.49)

used above in order to construct the system (5.27)–(5.30), we should consider
another set. Notice that parity operatorÎ P cannot be used directly for identifica-
tion of invariant subspaces since, according to (5.47), it does not commute with
translations and boosts.

The simplest possibility is to consider the system

p̂2 f (x, z,
∗
z) = m2 f (x, z,

∗
z), (5.50)

Ŵ2 f (x, z,
∗
z) = −s(s+ 1)m2 f (x, z,

∗
z), (5.51)

ŜR
3 f (x, z,

∗
z) = −sf(x, z,

∗
z). (5.52)

The last equation fixes the power 2s= 2( j1+ j2) of the polynomial inz,
∗
z; see

(5.31). The first two equations are the conditions of mass and spin irreducibility.
Therefore, the system describes fixed mass and spin, but the Poincar´e group rep-
resentation defined by this system is reducible. This representation decomposes
into 2(2s+ 1) irreps differing in the chiralityλ = −s, . . . , s and sign ofp0.
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Supplementing the system (5.50)–(5.52) by the equation

i B̂R
3 f (x, z,

∗
z) = ±( j1− j2) f (x, z,

∗
z), (5.53)

which change the sign under space reflection, it is possible to extract compo-
nents corresponding to the representation (j1, j2)⊕ ( j2, j1). If we consider only
the components labeled by (j1, j2) and (j2, j1), then for j1 6= j2, the mass and
spin irreducibility conditions (5.50) and (5.51) leave 4(2s+ 1) independent com-
ponents corresponding to the direct sum of four improper Poincar´e group irreps
differing in the signs of the energyp0 and the intrinsic parityη. But states with
definite intrinsic parity arise in such an approach only as linear combinations of
the solutions oftwo systems (5.50)–(5.53) with different sign in the last equation
(i.e., solutions with fixed chirality).

Let us investigate the possibility of constructing a system of equations that
remains invariant under space reflection and has solutions with definite intrinsic
parity. For this purpose, it is necessary to consider equations that combine equiva-
lent irreps of the proper Poincar´e group labeled by different chiralitiesλ = j1− j2.
In the other words,it is necessary to consider supplementary operators that define
some extension of the Lorentz group.These operators, replacinĝM2 and ˆ̄M2 in the
set (5.49), must commute with all the left generators of the proper Poincar´e group
and with parity operator̂I P. We suppose that one of these commuting operators is
linear in p̂.

A general form of the invariant equations linear inp̂ is

p̂µV̂µ f (x, z) = ~f (x, z), (5.54)

whereV̂µ transforms as a four-vector function ofz and∂/∂z.
The above vector operatorsVµ

ik of (5.25), (5.26) connect irreps with different
( j1, j2). OperatorŝVµ

12, V̂µ

21 conservej1+ j2, and operatorŝVµ

11, V̂µ

22 conservej1−
j2. One can consider any of the relations connecting two scalar functions

p̂µV̂µ

12 f j1, j2(x, z,
∗
z) = ~12 f j1− 1

2 , j2+ 1
2
(x, z,

∗
z),

p̂µV̂µ

21 f j1, j2(x, z,
∗
z) = ~21 f j1+ 1

2 , j2− 1
2
(x, z,

∗
z), (5.55)

p̂µV̂µ

11 f j1, j2(x, z,
∗
z) = ~11 f j1+ 1

2 , j2+ 1
2
(x, z,

∗
z),

p̂µV̂µ

22 f j1, j2(x, z,
∗
z) = ~22 f j1− 1

2 , j2− 1
2
(x, z,

∗
z), (5.56)

as an RWE. Thus, the operatorV̂µ in (5.54) is a linear combination of̂Vµ

ik .
Let us consider finite-component equations invariant with respect to space

reflection. This means:

1. The operator̂pµV̂µ is invariant under space reflection.
2. The equation has solutionsf (x, z,

∗
z) =∑ψn(x)φn(z,

∗
z), where functions

φn(z) carry a representation containing a finite number of irreps (j1, j2).
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It is easy to see that forX11 6= 0, the operator̂Vµ

11 cannot be contained in
V̂µ. In this case, for~22 6= 0, one can separate from the system of equations for
functions f j1, j2(x, z,

∗
z), f (x, z,

∗
z) =∑ f j1, j2(x, z,

∗
z) the independent equation

for the function characterized by maximalj1+ j2, which does not contain̂Vµ

22. (It
is not necessary to use operatorsV̂µ

11 andV̂µ

22 since these operators leavej1− j2
invariable and cannot connect irreps with differentλ.)

Relating to operatorŝVµ

12 and V̂µ

21, one can see that only the combination
p̂µ0̂

µ,

0̂µ = V̂µ

12+ V̂µ

21 =
1

2

(
σ̄ µα̇α

∗
zα̇∂α + σµαα̇zα∂α̇

)
, (5.57)

is invariant under space reflections. Operators0̂µ connect the representation (j1, j2)
with ( j1+ 1 j2− 1) and (j1− 1 j2+ 1) and conservej1+ j2. These operators
obey the commutation relations

[ Ŝ
λµ
, 0̂ν ] = i (ηµν0̂λ − ηλν0̂µ), (5.58)

[0̂µ, 0̂ν ] = −i Ŝ
µν
, (5.59)

which coincide with the commutation relations of the matricesγ µ/2. An explicit
calculation shows that̂0µ0̂µ depends on the irrep of the Lorentz subgroup,

0̂µ0̂
µ = 2 j1+ 2 j2+ 4 j1 j2. (5.60)

Supplementing the generators of the Lorentz group by the four operators

Ŝ
4µ = 0̂µ, Ŝab = −Ŝba

, (5.61)

we obtain

[ Ŝab
, Ŝcd] = i (ηbcŜad− ηacŜbd− ηbdŜac+ ηadŜbc), η44 = η00 = 1. (5.62)

Thus, the operatorŝSab
,a, b = 0, 1, 2, 3, 4, obey the commutation relations of the

generators of the 3+ 2 de Sitter groupSO(3, 2)∼ Sp(4, R). This group has two
fundamental irreps, namely the four-dimensional spinor irrepT[10] [by matrices
Sp(4, R)] and the five-dimensional vector irrepT[01] [by matricesSO(3, 2)].

Using (5.5), (5.18), and (5.60), we obtain for the second-order Casimir oper-
ator of the groupSp(4, R)

ŜabŜab f (x, z,
∗
z) = 4S(S+ 2) f (x, z,

∗
z), S= j1+ j2.

Thus, we deal with symmetric representations ofSp(4, R), which we denote as
T[2S0] (see Appendix B). These irreps can be obtained as a symmetric term in
the decomposition of the direct product (⊗T[10])2S. IrrepsT[2S0] characterized by
dimensionality (2S+ 3)!/[6(2S)!] combine all finite-dimensional irreps of the
Lorentz group withj1+ j2 = S.
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However, it is obvious that the equation

p̂µ0̂
µ f (x, z,

∗
z) = ~f (x, z,

∗
z) (5.63)

by itself does not fix spins and massm, defined by (5.27) and (5.28), or the power
j1+ j2 of the f (x, z,

∗
z) in z,

∗
z. In the rest frame, it is easy to see that even for

fixed S= j1+ j2, this equation fixes only the productms= ~, s ≤ S.
Let us consider the set of eight commuting operators

p̂µ, Ŵ
2, p̂Ŝ (or Ŝ3 in the rest frame), p̂µ0̂

µ, ŜabŜ
ab

(5.64)

acting in the space of functions of eight variablesxµ, zα,
∗
zα̇. In comparison with the

set (5.49), we have replaced two right operatorsM̂2, ˆ̄M2 by operatorŝpµ0
µ, ŜabŜab

invariant under parity transformation. Notice that instead ofŜabŜab, one can use
the operator̂SR

3 with eigenvalues equal to the minus power of the polynomial in
z,
∗
z, see (5.52).

Invariant subspaces are labeled by eigenvalues of operators

p̂2 f (x, z,
∗
z) = m2 f (x, z,

∗
z), (5.65)

Ŵ2 f (x, z,
∗
z) = −m2s(s+ 1) f (x, z,

∗
z), (5.66)

p̂µ0̂
µ f (x, z,

∗
z) = ms̃f(x, z,

∗
z), (5.67)

ŜabŜ
ab

f (x, z,
∗
z) = 4S(S+ 2) f (x, z,

∗
z). (5.68)

Unlike Eqs. (5.29) and (5.30), which fixj1 and j2 separately, the last equation
of the system fixes the irrepT[2S0] of the 3+ 2 de Sitter group and therefore the
power 2S= 2 j1+ 2 j2 of the polynomial inz,

∗
z. Irreps of the Poincar´e group

characterized by spins ≤ Scan be realized in the space of these polynomials.
In the rest frame,

p̂2
0 f (x, z,

∗
z) = m2 f (x, z,

∗
z),

p̂00̂
0 f (x, z,

∗
z) = ms̃f(x, z,

∗
z), 0̂0 = 1

2

(
σ 0α̇α ∗zα̇∂α + σ 0

αα̇zα∂α̇
)
. (5.69)

According to the first equation,p0 = ±m, and correspondinglỹs is a product of
eigenvalue of operator̂00 and signp0. For p0 = m, any function characterized by
n1− n2 = 2s is the solution of Eq. (5.69), wheren1 is the power of homogeneity
in the variables (z1+ ∗z1̇), (z2+ ∗z2̇), andn2 is the power of homogeneity in the
variables (z1− ∗z1̇), (z2− ∗z2̇). Therefore, forp0 = −m, any function characterized
by n1− n2 = −2s is the solution of Eq. (5.69).

Let us show that the relation

|s̃| ≤ s ≤ S (5.70)
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holds. The variableszα and zα̇ have the same transformation rule under space
rotations. Thus, the pairs (z1+ ∗z1̇), (z2+ ∗z2̇) and (z1− ∗z1̇), (z2− ∗z2̇) are spinors
of rotation group, but are characterized by opposite parity. The polynomials of
power 2j ′ in the first pair of variables or 2j ′′ in the second pair of variables
transform underTj ′ or Tj ′′ of the rotation group. At fixedj ′ and j ′′, the relatioñs=
( j ′ − j ′′) signp0 holds, and the space of polynomials of the power 2S= 2 j ′ + 2 j ′′

corresponds to the direct product of the representationsTj ′ andTj ′′ . This direct
product decomposes into a sum of irreps, labeled bys= | j ′ − j ′′|, . . . , j ′ + j ′′,
and therefore spins runs from|s̃| up toS.

In particular, for|s̃| = S, the spin irreducibility condition (5.66) is a conse-
quence of other equations of the system, and the spin is equal to one half of the
polynomial power. Below we restrict our consideration to this case, which allows
us to describe the spins by means of the irrep of the 3+ 2 de Sitter group with
minimal possible dimensionality. Correspondingly, fors̃= S, we will consider the
system

p̂2 f (x, z) = m2 f (x, z), (5.71)

p̂µ0̂
µ f (x, z) = msf(x, z), (5.72)

ŜabŜ
ab

f (x, z) = 4s(s+ 2) f (x, z). (5.73)

In the rest frame, the general solution in the set of the polynomial of power 2s in
z,
∗
z has the form

fm,s(x, z) =
s∑

s3=−s

Cs3e
imx0(

z1 + ∗z1̇

)s+s3
(
z2 + ∗z2̇

)s−s3

+ C′s3
e−imx0(

z1− ∗z1̇

)s+s3
(
z2− ∗z2̇

)s−s3
, (5.74)

wheres3 is the spin projection,

Ŝ3 f (x, z) = s3 f (x, z), Ŝ3 = 1

2

(
z1∂1 + ∗

z1̇∂
1̇− z2∂2 − ∗z2̇∂

2̇
)
. (5.75)

Thus, for unique massm and spins, there are 2s+ 1 independent positive-
frequency solutions and 2s+ 1 independent negative-frequency solutions belong-
ing to two irreps of the improper Poincar´e group. In the casẽs= −S, which
corresponds to the change of sign in Eq. (5.72), the general solution is obtained
from (5.74) by the substitution (zα+ ∗zα̇)↔ (zα− ∗zα̇). It follows from (5.74) that
for half-integer spins the sign ofs̃ is the product of signp0 and the intrinsic parity.9

9 According to (5.74), in the rest frame for half-integer spin, positive-frequency and negative-frequency
states are characterized by opposite parity. One can show (Ahluwalia et al., 1993; Gaioli and Alvarez,
1995; Gavrilov and Gitman, 2000; Ryder, 1988) that for fixed massmand representation (1

2 0)⊕ (0 1
2)

of the Lorentz group, this condition is sufficient to derive the Dirac equation.
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Only the four-dimensional irrep of the 3+ 2 de Sitter group corresponding to
spin 1/2 remains irreducible under the reduction on the improper Lorentz group.
For spin 1, the 10-dimensional irrep splits into 6+ 4 (antisymmetric tensor and
four-vector), and for spin 3/2, the 20-dimensional irrep splits into 8+ 12, as so on.

Consider plane wave solutions corresponding to a particle moving alongx3.
They can be obtained from the solutions in the rest frame (5.74) by means of the
Lorentz transformation

P = U P0U
†, whereP0 = ±diag{m,m}, U = diag{e−a, ea} ∈ SL(2,C),

where the sign corresponds to the sign ofp0,

pµ = kµ signp0, k0 = mcosh 2a, k3 = msinh 2a, e±a =
√

(k0± k3)/m.
(5.76)

Thus, it follows that

f ′m,s,s3
(x, z) = C1eik0x0+k3x3(

z1ea + ∗z1̇ e−a
)s+s3

(
z2e−a + ∗z2̇ ea

)s−s3

+ C2eik0x0−k3x3(
z1ea− ∗z1̇ e−a

)s+s3
(
z2ea− ∗z2̇ e−a

)s−s3
. (5.77)

In the ultrarelativistic case, for positivea, it is convenient to rewrite (5.77) in the
form

fm,s,s3(x, z) =
(

k0+ k3

m

)s{[
C1eik0x0+k0x3 + C2(−1)s−s3e−ik0x0−k0x3]

× (z1)s+s3(
∗
z2̇)s−s3 + O

(
k0− k3

k0+ k3

) 1
2
}

(5.78)

The main term in (5.78) corresponds to functions carrying irrep (s+λ
2

s−λ
2 ), λ = s3,

of the Lorentz group. The contributions of other irreps, (s+λ′
2

s−λ′
2 ), are damped

by a factor (k
0−k3

k0+k3
)|λ−λ

′|. Passing to the limita→+∞, (or m→ 0), we obtain
the states with certain chiralityλ = j1− j2 = s3 (for a→−∞, with chirality
λ = j1− j2 = −s3, respectively). In particular, in the limit, the states characterized
by helicity s3 = ±s correspond to the representation (s0)⊕ (0s) of the Lorentz
group.

Taking into account that operatorsV̂µ

21(V̂
µ

12) lower (raise) chiralityλ by 1 and
the decomposition

fs(x, z,
∗
z) =

s∑
λ=−s

f j1 j2(x, z,
∗
z), wheres= j1+ j2, λ = j1− j2, (5.79)
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one can write Eq. (5.72) in chiral representation in the form
p̂µV̂µ

21 fs− 1
2 ,

1
2

p̂µV̂µ

12 fs,0+ p̂µV̂µ

21 fs−1,1

· · ·
p̂µV̂µ

12 f 1
2 ,s− 1

2

 = ms


fs,0

fs− 1
2 ,

1
2· · ·

f0,s

 , (5.80)

For m 6= 0, this equation binds 1+ [s] irreps of the improper Lorentz group and
allows one to express components corresponding to the irrep (s0) in terms of
components corresponding to the irrep (s− 1

2
1
2) and so on. This, in turn, for

s= 1, 3/2, 2, allows one to pass from the first-order equations for the reducible
representation to second-order equations for the irrep of the improper Poincar´e
group. For example, fors= 1, excluding f1,0 and f0,1, we obtain

m2 f 1
2

1
2
(x, z) = [ p̂µV̂µ

12, p̂ν V̂
ν
21

]
+ f 1

2
1
2
(x, z). (5.81)

In the general case, one also can to pass from the system of first-order equations
(5.80) on the reducible representation to higher order equations for the irrep, for
example, to the equations of order 1+ [s] on the components transforming under
irreps (s2

s
2) or (2s+1

4
2s−1

4 )⊕ ( 2s−1
4

2s+1
4 ) for the cases of integer or half-integer

spin, respectively.
Let us consider some particular cases.
For s= j1+ j2 = 1/2, we have

f 1
2
(x, z) = χα(x)zα+ ∗

ψα̇(x)
∗
zα̇= ZD9D(x), 9D(x) =

(
χα(x)
∗
ψα̇ (x)

)
, (5.82)

whereZD is given by formula (5.7). If we substitute (5.82) into Eq. (5.72) and
compare the coefficients atzα and at

∗
zα̇ in the left and right sides, we obtain the

Dirac equation

p̂µγ
µ9D(x) = m9D(x), γ µ =

(
0 σµ

σ̄µ 0

)
. (5.83)

According to (5.8), for space inversion, we obtain

ZD9D(x)
P→ ZD9

P
D (x̄) = ZDγ

09D(x̄),

wherex̄ = (x0,−xk). The matrixγ 5 = diag{σ 0,−σ 0} corresponds to the chirality
operator (5.32).

A complex conjugate function corresponds to the charge conjugate state,

∗
f 1/2 (x, z) = −ψα(x)zα− ∗χα̇ (x)

∗
zα̇,

(the minus sign is from the anticommutation of spinors,ψαzα = −zαψα) or in
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matrix form,

ZD9D(x)
C→
∗
ZD

∗
9D (x) = ZD9

c
D(x),

9c
D(x) = −

(
ψα(x)
∗
χα̇ (x)

)
= iσ 2

(
ψα(x)

− ∗χα̇ (x)

)
, (5.84)

where ZD = (zα,
∗
zα̇), and ZD obey the same transformation law. Thus, we get

different scalar functions to describe particles and antiparticles and hence two
Dirac equations for the two signs of charge, respectively. This matches completely
with the results of Gavrilov and Gitman (2000). It was shown there that in the
course of a consistent quantization of a classical model of a spinning particle,
such a (charge-symmetric) quantum mechanics appears. At the same time, it is
completely equivalent to the one-particle sector of the corresponding quantum
field theory.

Real functionsf1/2(x, z) =
∗
f 1/2 (x, z) describing Majorana particles depend

on the elements ofZM (5.9), and correspondinglyψα(x) = −χα(x) = iσ 2χα(x).
Space reflection maps these functions into functions ofZM.

For s= j1+ j2 = 1, we have

f1(x, z) = χαβ(x)zαzβ + φβ̇α (x)zα
∗
zβ̇ +ψα̇β̇(x)

∗
zα̇
∗
zβ̇ = 8µ(x)qµ + 1

2
Fµν(x)qµν,

(5.85)
where

qµ = 1

2
σ
µ

αβ̇
zα
∗
zβ̇ , qµqµ = 0,

qµν = −qνµ = 1

2

[
(σµν)αβzαzβ + (σ̄µν)α̇β̇

∗
zα̇
∗
zβ̇
]
, (5.86)

8µ(x) = −σ̄ β̇αµ φαβ̇(x),

Fµν(x) = −2[(σµν)αβχ
αβ(x)+ (σ̄µν)α̇β̇ψ

α̇β̇(x)]. (5.87)

Substituting (5.85) into Eq. (5.72), we obtain

mψα̇β̇(x) = 1

2
p̂µσ̄

µα̇γ φβ̇γ (x), mχαβ(x) = 1

2
p̂µσ

µ
γ̇ αφ

γ̇

β (x),

mφβ̇α (x) = p̂µ[σ̄ µβ̇γ χαγ (x)+ σµαα̇ψα̇β̇(x)], (5.88)

mFµν(x) = ∂µ8ν(x)− ∂ν8µ(x), m8µ(x) = ∂νFµν(x). (5.89)

The Duffin–Kemmer equation in the form (5.88) or (5.89) is the equation for the
irrep T[20] of the 3+ 2 de Sitter group and thus for the reducible representa-
tion (1 0)⊕ ( 1

2
1
2)⊕ (0 1) of the Lorentz group. This representation contains both
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the four-vector8µ(x) and the antisymmetric tensorFµν(x), which correspond to
chiralitiesλ = 0 andλ = ±1. Excluding componentsFµν(x), we obtain a second-
order system only for the components8µ(x) transforming under the irrep (1

2
1
2) of

the Lorentz group:

( p̂2−m2)8µ(x) = 0, p̂µ8µ(x) = 0. (5.90)

One can rewrite the operatorp̂µ0̂
µ in terms of the complex variablesqµ andqµν ,

p̂µ0̂
µ = −i p̂µ

(
qµν∂/∂qν − qν∂/∂qµν

)
. (5.91)

Such a conversion to vector indices is possible when considering any integer spin.
Notice that two sets of real spin variables with vector indices can be obtained by
substituting elements ofZM andZM instead ofZD into (5.86).

One may describe the neutral spin-1 field, in particular, by a real function of
the elements of the Majoranaz-spinor, f1(x, z) =

∗
f 1 (x, z). However, the spaces

of quadratic functions of the Diracz-spinor ZD and Majoranaz-spinor ZM are
noninvariant with respect to charge conjugation and space reflection, respectively.
To describe a spin-1 neutral particle coinciding with its antiparticle, one may use
bilinear functions ofZD andZD.

For the casess= 1/2 ands= 1, the first equation of the system (5.71)–
(5.73) (Klein–Gordon equation) is the consequence of the other equations. For
s> 1, the solutions of (5.72) are characterized by spin and mass spectrum,si =
{s, s− 1, . . . ,1} or si = {s, s− 1, . . . ,1/2},mi = ms/si . Thus, for higher spin
fields, the Klein–Gordon equation is an independent condition, allowing us to
exclude from the spin spectrum all spins except the maximals= j1+ j2.

The casess= 1/2 ands= 1 are also exceptions in the sense of simplicity
of labeling the components by spinor or vector indices. The number of indices of
symmetric spin-tensors necessary for labeling higher spin components increases
in spite of the fact that it is sufficient to use only three operators and therefore only
three numbers for labeling the states belonging to symmetric irreps ofSO(3, 2).

In particular, for a spin-3/2 particle, there exist four kinds of components,
namelyψαβγ , ψα̇βγ , ψα̇β̇γ , ψα̇β̇γ̇ , corresponding to four possible values of the
chirality. For a spin-2 particle, the representation in terms ofqµ and qµν is
cumbersome,

f2(x,q) = 8µν(x)qµqν + 1

2
Fµν,ρ(x)qµνqρ + 1

4
Fµν,ρσ (x)qµνqρσ, (5.92)

with the necessity to fix independent components by means of relationsqµqµ =
0,qµνqµ + qµνqν = 0, and so on.

Thus, beginning from spin 3/2, it is convenient to use the universal notation
ψ

m1m2
j1 j2

(x) associated with the decomposition (5.20) over the monomial chiral basis
(5.22) [see also (B11)–(B13)]. Two indicesj1, j2 label spins= j1+ j2 and chiral-
ity λ = j1− j2 and two indicesm1,m2 label independent components inside the
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irrep of the Lorentz group. This notation is also suitable for infinite-dimensional
representations.

By analogy with the 2+ 1 case, one can find plane wave solutions of the
system (5.71)–(5.72) for any spin s in general form without using the matrix repre-
sentation. Corresponding to the states of a particle moving alongx3 are eigenstates
of the operatorp̂i Ŝ

i with eigenvalues|p|σ , whereσ = s3 signp3 is the helicity.
These states have the form

fm,s,σ (x, z) =
s∑

σ=−s

Cσeik0x0+k3x3
(z1ea + ∗z1̇e

−a)s+σ (z2e−a + ∗z2̇e
a)s−σ

+
s∑

σ ′=−s

Cσ ′e
−ik0x0−k3x3

(z1ea− ∗z1̇ e−a)s−σ (z2ea− ∗z2̇ e−a)s+σ, (5.93)

whereea is given by (5.76). For a rest particle, one can obtain the general solution
characterized by the spin projections′ in the directions ofn from (5.74) by the
rotation z′β = Uα

β zα,U ⊂ SU(2). For a particle characterized by a momentum
directionn and helicityσ , starting from the state (5.93), one can obtain the solution
by an analogous rotation.

The improper Poincar´e group includes space reflection, which interchanges
the representations (j1, j2) and (j2, j1). Therefore, we consider the equations con-
necting these representations [and the corresponding components of the solutions
of the system (5.71)–(5.73)] in more detail.

In the casej1 = j2, solutions of the system (5.71)–(5.73) are characterized
by fixed spins= j1+ j2 and massm. Thus, the relations (5.27)–(5.30) are valid,
and corresponding 2(2s+ 1) components obey the equations for a massive tensor
field (5.44).

In the general case, the equations connecting the components transforming
under irreps (j1, j2) and (j2, j1) of the Lorentz subgroup have the form

(2 j2)!
(
p̂µV̂µ

12

)2|λ|
f j1 j2(x, z,

∗
z) = (2 j1)! m2|λ| f j2 j1(x, z,

∗
z),

(2 j1)!
(
p̂µV̂µ

21

)2|λ|
f j2 j1(x, z,

∗
z) = (2 j2)! m2|λ| f j1 j2(x, z,

∗
z), (5.94)

wherej1 > j2, |λ| = j1− j2. These equations are invariant under space reflection.
Using the decomposition (5.79) and the explicit form of the general solution (5.74)
of the system (5.71)–(5.73) in the rest frame, one can prove the validity of (5.94)
by direct calculation. Going over to spin-tensor notation, we get

pµσ̄
µα̇2 j2+1α2 j2+1 · · · pν σ̄ να̇2 j1α2 j1ψ

α̇1···α̇2 j2
α1···α2 j1

(x) = m2|λ|ψ
α̇1···α̇2 j1
α1···α2 j2

(x),

pµσ
µ
α2 j2+1α̇2 j2+1

· · · pνσ να2 j1 α̇2 j1
ψ
α̇1···α̇2 j1
α1···α2 j2

(x) = m2|λ|ψ
α̇1···α̇2 j2
α1···α2 j1

(x). (5.95)

Equations (5.95) are consequences of the system (5.71)–(5.73), but unlike this
system, in the general case, they require supplementary conditions to fix mass and
spin.
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Equations (5.95) are first-order equations only in the case|λ| = 1/2, which
corresponds to representations (2 j±1

4
2 j∓1

4 ), j = j1+ j2, describing half-integer
spins. In this case, going over to vector indices and supplementing the equations by
subsidiary conditions (5.45) [which also are consequences of the system (5.71)–
(5.73) and exclude components withs< j1+ j2], we obtain the Rarita–Schwinger
equations (Rarita and Schwinger, 1941)

( p̂µγ
µ −m)9µ1µ2···µn(x) = 0, γ µ9µµ2···µn(x) = 0, (5.96)

where n = 2s− 1 and9µ1···µn(x) is a four-component column composed of
9µ1···µnα(x) and9α̇

µ1···µn
(x). The conditions∂µ9µµ2···µn(x) = 0 and9µ

µ···µn
(x) = 0

appear as consequences of these two equations (Ohnuki, 1988).
The case|λ| = s corresponding to representations (s 0) and (0s) is preferred

because of the minimal number of components. In this case, Eq. (5.95) are 2s-
order Joos–Weinberg equations (Joos, 1962; Weinberg, 1964, 1969) of so-called
2(2s+ 1)-component theory,

pµσ̄
µα̇1α1 · · · pν σ̄ να̇2sα2sψα1···α2s(x) = m2sψα̇1···α̇2s(x),

pµσ
µ
α1α̇1
· · · pνσ να2sα̇2s

ψα̇1···α̇2s(x) = m2sψα1···α2s(x). (5.97)

In the rest frame, as a consequence, we obtainp4s
0 = m4s, and for s ≥ 1, the

Joos–Weinberg equations have solutions with complex energyp0, |p0| = m. The
existence of such solutions was pointed out also in Ahluwalia and Ernst (1992).

5.4. Relativistic Wave Equations Invariant Under the Improper
Poincaré Group. Equations for Several Scalar Functions

We have considered the linear equations foronescalar function on the group.
The condition of invariance under space reflection leads to the system (5.71)–(5.73)
for a particle with spins= j1+ j2 and massm.

For the construction of invariant wave equations, one may also use the oper-
ators p̂µV̂µ

ik , which are not invariant under space reflections. Using several scalar
functions f (x, z), it is possible to restore the invariance under space reflections.

In particular, Eqs. (5.55) containing operatorsV̂µ

12(k) and V̂µ

21(k) connect two
scalar functions. Using the decomposition (5.23) in terms of spin-tensors, we obtain
the Dirac–Fierz–Pauli equations (Dirac, 1936; Fierz and Pauli, 1939),

p̂µσ̄
µα̇βψ

α̇1···α̇l
ββ1···βn

(x) = ~ψα̇α̇1···α̇l
β1···βn

(x)

p̂µσ
µ
βα̇ψ

α̇α̇1···α̇l
β1···βn

(x) = ~ψα̇1···α̇l
ββ1···βn

(x). (5.98)

These equations connect two functions transforming under irreps (n
2 + 1

2
l
2) and

( n
2

l
2 + 1

2) of the Lorentz group and forn = l map to one another under parity
transformation.
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Let us consider a system of equations of the form (5.55), (5.56), which
connect several scalar functions with differentj1, j2. The equations of this sys-
tem connect the representation (j1, j2) with at least one of the representations
( j1± 1, j2∓ 1), ( j1± 1, j2± 1). This allows one to identify this system with the
general Gel’fand–Yaglom equations (Gel’fand and Yaglom, 1948; Gel’fandet al.,
1963)

(αµ p̂µ − ~)ψ = 0, [Sλµ, αν ] = i (ηµναλ − ηλναµ). (5.99)

In the present approach, the latter relation is a consequence of the commutation

relations [̂S
λµ
, V̂ν

ik ] = i (ηµν V̂λ
ik − ηλν V̂µ

ik ). This relation is necessary for Poincar´e
invariance of the equations (Barut and Raczka, 1977; Gel’fandet al., 1963).

Supplemented by the commutation relations [αµ, αν ] = Sµν , finite-
component equations of the form (5.99) are known as Bhabha equations (Bhabha,
1945), although for they were first systematically considered by Lubanski (1942).
These equations are classified according to the finite-dimensional irreps of the
3+ 2 de Sitter groupSO(3, 2). Other possible commutation relations of the ma-
tricesαµ are discussed in Castell (1967).

Equation (5.72) considered on a scalar function is a particular case of the
Bhabha equations. This case corresponds to symmetric irrepsT[2s0] of the 3+ 2
de Sitter group. Generally speaking, the Bhabha equations are characterized by
a finite number of differentm ands. Therefore, these equations connect fields
transforming under nonequivalent irreps of the Poincar´e group.

If the equations include the operatorsp̂µV̂µ

11 and p̂µV̂µ

22, then either the equa-
tions describe at least two different spinssor the conditions= j1+ j2 connecting
spins with a highest weight of the irrep of the Lorentz group is not valid.

We cite as an example the system connecting irreps (0 0) and (1
2

1
2) of the

Lorentz group:

p̂µV̂µ

11 f00(x, z) = ~1 f 1
2

1
2
(x, z), p̂µV̂µ

22 f 1
2

1
2
(x, z) = ~2 f00(x, z) (5.100)

where f00(x, z) = ψ(x), f 1
2

1
2
(x, z) = ψβ̇

α (x)zα
∗
zβ̇ ; in componentwise form, we

havep̂µψ = 2~1ψµ, p̂µψ
µ = ~2ψ . In the rest frame, we obtain~2 = 2~1 = m.

Thus, the system (5.100) is equivalent to the Duffin equation for scalar particles,
which corresponds to the five-dimensional vector irrepT[01] of theSO(3, 2) group.

5.5. Relativistic Wave Equations Invariant Under the Improper Poincaré
Group. Equations for Particles with Composite Spin

Many-particle systems are described by functions of the sets of variables
x(i ), z(i ),

∗
z(i ). Here we will consider not many-particle systems in the usual sense,

but objects corresponding to functionsf (x, z(1),
∗
z(1), . . . , z(n),

∗
z(n)) [or, briefly,

f (z, {z(i )})], that is, to functions of one set ofx and several sets ofz. One may
interpret these objects as particles with composite spin.
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As an example, we will consider the Ivanenko–Landau–K¨ahler (or Dirac–
Kähler) equation (Ivanenko and Landau, 1928; K¨ahler, 1962). Let us write scalar
function f (x, z(1), z(2)) linear inz(1) andz(2) in the form

f
(
x, z(1), z(2)

) = Z(1)
D 9(x)

(
Z(2)

D

)† = 4∑
i, j=1

(
Z(1)

D

)
i
9i j (x)

( ∗
Z(2)

D

)
j
, (5.101)

whereZD = (z1z2 ∗z1̇
∗
z2̇), and9(x) is a 4× 4 matrix with a transformation rule

9 ′(x′) = Ŭ9(x)(Ŭ )†, Ŭ = diag{U, (U−1)†},
in contrast to the transformation rule9 ′D(x′) = Ŭ9D(x) of the Dirac spinor (5.83).
Let us impose the equation on the first (“left”) spin subsystem,(

p̂µ0̂
µ

(1)−m/2
)

f (x, z(1), z(2)) = 0, (5.102)

and we do not impose any conditions on the second (“right”) spin subsystem.
Writing (5.102) in componentwise form, we obtain the Ivanenko–Landau–K¨ahler
equation in spinor matrix representation

( p̂µγ
µ −m)9(x) = 0. (5.103)

According to (5.103), the 16 components9i j (x) obey the Klein–Gordon equation,
and therefore the mass is equal tom. The spin of both subsystems is equal to
1/2. The spin of the system is indefinite, and there are both spin-0 and spin-1
components.

The consideration of this equation is associated mainly with attempts to de-
scribe fermions by antisymmetric tensor fields [see, e.g., Benn and Tucker (1983,
1988), Bullinaria (1986), Obukhov and Solodukhin (1993), and also Ivanenkoet al.
(1985) as a good introduction]. The spin subsystems (“left-spin” and “right-spin”)
were considered in Benn and Tucker (1983) and Obukhov and Solodukhin (1993).

Let us consider now linear symmetric functions ofz(1), . . . , z(n+l ):

f n
2

l
2

(
x,
{
z(i )
}) = ψα̇1,...,α̇l

β1,...,βn
(x)

∑
zβ1

(1) · · · zβn

(n)
∗
z(n+1)α̇1

· · · ∗z(n+l )α̇l
, (5.104)

where the symmetric spinorsψα̇1,...,α̇l
β1,...,βn

(x) transform under the irreps (n/2, l/2),
and all permutations of 1, . . . ,n+ l are summed over. As a consequence of the
symmetry of the multispinors with respect to index permutations, spin subsystems
are indistinguishable, and this allows us to use functions of several sets of spin
variables for describing the usual particles.

One obtains the Dirac–Fierz–Pauli equations (5.98) by acting by the operators
V̂µ

12(k) and V̂µ

21(k) on the functions (5.104) corresponding to irreps (n
2 + 1

2,
l
2) and

( n
2,

l
2 + 1

2) of the Lorentz group:

V̂µ

12(k) f n
2+ 1

2 ,
l
2

(
x,
{
z(i )
}) = ~ f n

2 ,
l
2+ 1

2

(
x,
{
z(i )
})
,

V̂µ

21(k) f n
2 ,

l
2+ 1

2

(
x,
{
z(i )
}) = ~ f n

2+ 1
2 ,

l
2

(
x,
{
z(i )
})
. (5.105)
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In the general case, a linear symmetric function ofz(k), k = 1, . . . ,2 j , has
the form

f j (x, {z(i )}) =
∑

n,l ;n+l=2 j

ψ
α̇1,...,α̇l
β1...βn

(x) zβ1
(1) . . . z

βn

(n)
∗
z(n+1)α̇1

. . .
∗
z(n+l )α̇l

. (5.106)

and corresponds to the symmetric part of the representation ((1
2 0)⊕ (0, 1

2))2 j .
This symmetric part expands into a direct sum of irreps (j1, j2), j1+ j2 = j . We
impose on each spin subsystem the condition(

p̂µ0̂
µ

(k) −m/2
)

f
(
x, z(1), . . . , z(2 j )

) = 0, k = 1, . . . ,2 j . (5.107)

Rewriting this equations in four-component form, we obtain the Bargmann–Wigner
equations (Bargmann and Wigner, 1948; Greiner, 1997; Ohnuki, 1988)(

p̂µγ
µ

(k) −m
)
αkβk

ψβ1...βk...β2 j (x) = 0. (5.108)

As a consequence of (5.107), we obtain the equations for the system as a whole:

( p̂2−m2) f
(
x, z(1), . . . , z(2 j )

) = 0,(
p̂µ0̂

µ −ms
)

f
(
x, z(1), . . . , z(2 j )

) = 0, 0̂µ =
∑

0̂
µ

(k), (5.109)

which are analogous to Eqs. (5.71)–(5.72) for the cases= j1+ j2. Both the
Bargmann–Wigner equations and system (5.109) have 2(2s+ 1) independent so-
lutionsψ(x), and therefore these systems are equivalent.

5.6. Relativistic Wave Equations: Comparative Consideration

In the framework of the group-theoretic classification of the scalar fields
f (x, z) on the Poincar´e group, we have obtained two types of equations describing
unique spin and mass, namely equations for the eigenfunctions of the Casimir
operator of the Lorentz spin subgroup [j1 and j2 are fixed; see (5.30)] and equations
for the eigenfunctions of the Casimir operator of theSO(3, 2) group (the sum
j1+ j2 is fixed). Below we will consider comparative characteristics of these
equations and also the case (j1 j2)⊕ ( j2 j1) corresponding to irreps of the improper
Poincaré group, but requiring two scalar functions for its formulation.

1. Equations for the functions corresponding to the fixed irrep (j1 j2) of the
Lorentz group. Mass and spin irreducibility conditions leave 2(2s+ 1) independent
components corresponding to two improper Poincar´e group irreps differing in the
sign ofp0. Fors= j1+ j2, the equations in spin-tensor form constitute the system
of the Klein–Gordon equation and the subsidiary condition (5.42), which elimi-
nates components with other possible values of spins for fixed j1, j2| j1− j2| ≤
s< j1+ j2. Fors 6= j1+ j2, one should consider the general subsidiary condition
(5.43). An alternative to the use of the subsidiary condition is to consider functions
of momentum and spin variables with invariant constraints (5.39).
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There are two preferred cases. The first corresponds to the representations
( s

2
s
2) mapping onto themselves under space reflection and are most often used

to describe integer spins. The second corresponds to the representations (s 0) and
(0 s). In this case, there is no necessity to impose subsidiary conditions since they
are fulfilled identically.

2. Equations for functions corresponding to the representations (j1 j2) and
( j2 j1), j1 6= j2, which are interchanged under space reflection. Unlike the equa-
tions considered above for fixedj1, j2, these equations in the general case are not
formulated as equations for one scalar functionf (x, z). The conditions of mass
and spin irreducibility leave 4(2s+ 1) independent components corresponding to
four improper Poincar´e group irreps differing in the sign ofp0 and intrinsic parity
η. To choose 2(2s+ 1) components corresponding to fixed sign ofη or p0η, it is
necessary to supplement these conditions by Eqs. (5.94) connecting components
corresponding to (j1 j2) and (j2 j1).

Equations (5.94) are first-order equations only for the representations
( j + 1

2 j )⊕ ( j j + 1
2). These representations and the associated Rarita–Schwinger

equations (5.96) are most often used to describe half-integer spins. However, just
as in the case of representations (j j ), subsidiary conditions supplement the field
equations, and the number of equations exceeds the number of field components.
Therefore, one has an overdetermined set of equations, which, although consistent
in the free-field case, fors> 1 becomes self-contradictory with minimal elec-
tromagnetic coupling (Fierz and Pauli, 1939). In order to avoid inconsistency, it
is possible to give a Lagrangian formulation, introducing auxiliary fields (Fierz
and Pauli, 1939; Singh and Hagen, 1974a,b), but this formulation leads to aca-
sual propagation with minimal electromagnetic coupling (Capri and Kobes, 1980;
Tung, 1967; Velo, 1972; Velo and Zwanziger, 1969; Wightman, 1978; Zwanziger,
1978).

For the case (s 0)⊕ (0 s), one can construct the 2(2s+ 1)-component theory,
but the corresponding Joos–Weinberg equations of order 2s (Joos, 1962; Weinberg,
1964) [see (5.97)] fors ≥ 1 also have solutions with complex energy.

The second-order equation for the representation (s0)⊕ (0s), [ p̂2− e
2s Ŝ

µν ×
Fµν −m2]ψ(x) = 0 (Feynman and Gell-Mann, 1958; Hurley, 1971, 1974;
Ionesco-Pallas, 1967), for a free particle possesses 4(2s+ 1) independent compo-
nents differing in spin projection and in signs ofp0 andη. On the other hand, this
equation describes unique mass and spin and is characterized by casual solutions.
In particular, exact solutions in an external constant uniform electromagnetic field
are known (Kruglov, 1999). One may rewrite the above equation as a first-order
equation with minimal coupling for representations (s 0)⊕ (s− 1

2
1
2)⊕ ( 1

2 s−
1
2)⊕ (0 s). As noted in Tung (1967), this is the simplest class of representations
describing unique mass and spin, which led to first-order equations without sub-
sidiary conditions.
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3. Equations (5.71)–(5.72) for eigenfunctions of the Casimir operator (5.73)
of theSO(3, 2) group with eigenvalues 4s(s+ 2), s= j1+ j2:

( p̂µ0̂
µ −ms) f (x, z,

∗
z) = 0, ( p̂2−m2) f (x, z,

∗
z) = 0. (5.110)

The condition of spin irreducibility (5.51) is a consequence of this system.
The first equation of the system is the Bhabha equation (Bhabha, 1945;

Lubanski, 1942) corresponding to the symmetric irrepT[2s 0] of the group
Sp(4, R) ∼ SO(3, 2). This equation represent a straightforward higher spin gen-
eralization of the Dirac and spin-1 Duffin–Kemmer equations. Both the Bhabha
equations and the problem of minimal coupling for these equations were consid-
ered by Krajcik and Nieto [see Krajcik and Nieto (1977), which contains refer-
ences to six earlier papers]. The theory is casual with minimal electromagnetic
coupling (Krajcik and Nieto, 1976), but in the general case, the Bhabha equa-
tions describe multimass systems. The connection of the Rarita–Schwinger and
Bargmann–Wigner equations with the Bhabha equations also was considered in
Loideet al. (1997).

The solutions of the system (5.110) have components transforming under
2s+ 1 irreps (j1, j2), j1+ j2 = s, of the Lorentz group. But the components cor-
responding to different chiralitiesλ = j1− j2 are not independent. In contrast to
the left generators of the Poincar´e group, the operatorŝ0µ do not commute with the
chirality operator (which is the right generator of the Poincar´e group) and combine
2s+ 1 representations of the Lorentz group into one irrep of the 3+ 2 de Sitter
groupSO(3, 2).

The current componentj 0 is positive definite for half-integer-spin parti-
cles and the energy density is positive definite for integer-spin particles (see
Appendix B).

In the rest frame, Eqs. (5.110) have 2s+ 1 positive- and 2s+ 1 negative-
frequency solutions labeled by different spin projections [see (5.74)] and half-
integer-spin solutions with opposite frequency are characterized by opposite parity.
In the ultrarelativistic limit, two solutions with opposite sign ofp0 correspond to
any of 2s+ 1 of possible values of chirality [see (5.78)].

Thus, the system (5.110) describes a particle with unique spin and mass,
is invariant under parity transformation, and possesses 2(2s+ 1) independent
components.

Let us briefly consider the problem of equivalence of the different RWE. In
the case of free fields, using the relation

[∂µ, ∂ν ] = 0, (5.111)

one can establish the equivalence of wide class of RWE.
As established above, in the free case, the system (5.110) and the Bargmann–

Wigner equations (5.107), which both describe a particle by means of wave
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functions with componets transforming under 2s+ 1 irreps (j1 j2), j1+ j2 = s,
of the Lorentz group, are equivalent. However, the formulation (5.110) is more
general since, unlike the Bargmann–Wigner equations, it can be considered also
in the case of infinite-dimensional unitary representations of the Lorentz group, as
is done above with an analogous system in the (2+ 1)-dimensional case.

The above free equations for representations (j1 j2) or ( j1 j2)⊕ ( j2 j1) can
be obtained as a consequence of the Bargmann-Wigner equations (Greiner, 1997;
Ohnuki, 1988) or the system (5.110) by excluding other components. In the general
case form 6= 0, one may express all components in terms of the components
corresponding to two chiralities±λ, where−s ≤ λ ≤ s.

It is obvious that a coupling which is minimal for one system is not minimal
for another, “equivalent” system if one uses the relation (5.111) to prove this
equivalence in the free case. These equations will differ by terms proportional to
the commutator of covariant derivatives [Dµ, Dν ] = igFµν .

Therefore, when an interaction is introduced, the system of equations can
be found to be inconsistent if, when taking account of (5.111), some equations
are consequences of others. In particular, the spin-1 Bargmann-Wigner equations
with minimal electromagnetic coupling are inconsistent [for the proof, see, e.g.,
Buchbinder and Shavartsman (1993)], but the Duffin–Kemmer and Proca equations
with minimal coupling, which are equivalent to them in the free case, are consistent
and characterized by causal solutions (Velo and Zwanziger, 1969).

Recently, different approaches have been considered to introduce interactions
for higher spin massive fields [see, in particular, Buchbinderet al. (1999, 2000a),
Klishevich (2000), and Kruglov (1999)]. We hope the present approach will offer
new possibilities to describe interacting higher spin fields.

6. EQUATIONS FOR FIXED SPIN AND MASS: GENERAL FEATURES

Consider now the general properties of the obtained equations describing a
particle with unique massm> 0 and spins in two dimensions,

p̂2 f (x, θ ) = m2 f (x, θ ), (6.1)

p̂µ0̂
µ f (x, θ ) = msf(x, θ ), (6.2)

in three dimensions,

p̂2 f (x, z) = m2 f (x, z), (6.3)

p̂µ Ŝ
µ

f (x, z) = msf(x, z), (6.4)

Ŝµ Ŝ
µ

f (x, z) = S(S+ 1) f (x, z), (6.5)
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and in four dimensions,

p̂2 f (x, z) = m2 f (x, z), (6.6)

p̂µ0̂
µ f (x, z) = msf(x, z), (6.7)

ŜabŜ
ab

f (x, z) = 4S(S+ 2) f (x, z). (6.8)

In the latter case, we suppose in additions= ±Sto avoid nontrivial spin and mass
spectrum.

In all dimensions, the first equation (condition of mass irreducibility) is the
eigenvalue equation for the Casimir operator of the Poincar´e group. The other
equations, although they seem similar, have different origins in even and odd
dimensions. This is related to the different role of space inversion.

In 2+ 1 dimensions, the other equations (6.4)–(6.5) are eigenvalue equations
for the Casimir operator of the Poincar´e group and the spin Lorentz subgroup.

In even dimensions, the Casimir operators of the Lorentz subgroup do not
commute with the space inversion operator, and space inversion combines two
equivalent representations of the proper Poincar´e group labeled by chiralities±λ
into representations of the improper Poincar´e group. If one rejects equations that
fix chirality [in 3+ 1 dimensions, this corresponds to the transition to the system
(5.50)–(5.52)], then in the rest frame, it is easy to see that there is a redundant
number of independent components. Thus, it is necessary to construct an equation
connecting the states with different chiralities, and a corresponding new set of
commuting operators. This can be done by using supplementary operators0̂µ,
which extend the Lorentz groupSO(D, 1) up to theSO(D, 2) group with the
maximal compact subgroupSO(D)⊗ SO(2). The operator̂00 is the generator of
the compactSO(2) subgroup.

The third equation of the system fixes the power 2S of homogeneity of the
functions f (x, z) in z and therefore fixes the irrep of the Lorentz group in 2+ 1
dimensions or of the 3+ 2 de Sitter group in 3+ 1 dimensions. [In 1+ 1 dimen-
sions, there exists an analogous equation0̂a0̂

a f (x, θ ) = s(s+ 1) f (x, θ ), but, in
fact, this equation defines the structure of0̂µ.]

The positive (half-) integerS= scorrespond to finite-dimensional nonunitary
irreps of the Lorentz (or de Sitter) group. Such irreps are realized in the space of
power 2s polynomials inz.

NegativeS= −s correspond to infinite-dimensional unitary irreps. The uni-
tary property allows one to combine the probability amplitude interpretation and
relativistic invariance [the desirability of this combination was stressed by Dirac
(1972b)]. Thus, the equations under consideration allow two approaches to the
description of the same spin by means of both finite-dimensional nonunitary and
infinite-dimensional unitary irreps.
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In 1+ 1 and 2+ 1 dimensions, there is the possibliity of the existence of
particles with fractional spin since the groupsSO(1, 1) andSO(2, 1) do not contain
a compact Abelian subgroup. However, the description of massive particles with
fractional spin can be given only in terms of the infinite-dimensional irreps of the
groupSO(2, 1). This is another reason to consider infinite-dimensional irreps.

Fixing the irrep of the Lorentz (or de Sitter) group with the help of the
third equation of the system, one can come to the usual multicomponent matrix
description by the separation of space and spin variables:f (x, z) =∑φn(z)ψn(x),
whereφn(z), form the basis in the representation space of the Lorentz (or de Sitter)
group. Thus, depending on the choice of the solution of the third equation, the
second equation in the matrix representation is either a finite-component equation
or an infinite-component equation of Majorana type.

For fundamental spinor irreps, the action of differential operators 2Ŝ
µ

in 2+ 1
dimensions and 2̂0µ in 1+ 1 and 3+ 1 dimensions in the space of functionsf (x, z)
on the Poincar´e group can be rewritten in terms of the action of correspondingγ -
matrices on the functionsψ(x).

Differential operators0̂µ and matricesγ µ/2 obey the same commutation
relations

[0̂µ, 0̂ν ] = −i Ŝ
µν
, [ Ŝ

µ
, Ŝ

ν
] = −i εµνρ Ŝρ.

In 3+ 1 dimensions, the operators0̂µ andŜ
µν

obey the commutation relations of
generators of theSO(3, 2) group [see (5.62)].

Anticommutation relations for the operatorsŜ
µ

in 2+ 1 and0̂µ in 1+ 1 and
3+ 1 dimensions are analogous to the relations forγ -matrices,

[ Ŝ
µ
, Ŝ

ν
]+ = 1

2
ηµν, [0̂µ, 0̂ν ]+ = 1

2
ηµν,

and are valid only for fundamental spinor irreps. This is a group-theoretic property
connected with the fact that for these irreps, the double action of lowering or raising
operators on any state gives zero as a result. [Notice that, besides the case of spinor
irreps of orthogonal groups, anticommutation relations also hold for fundamental
N-dimensional irreps ofSp(N) andSU(N) groups (Gitman and Shelepin, 1998).]

For s= 1/2 ands= 1, the first equation of the system (condition of mass
irreducibility) is a consequence of (6.4) or (6.7). In the general case, the second
equation of the system describes multimass systemsmi si = ms. Thus, fors> 1,
it is necessary to consider both equations.

Consider some characteristics of the equations associated with finite-
dimensional irreps of the Lorentz group. If we reject the first equation of the
system (i.e., the condition of mass irreducibility), then for the second equation
of the system, the componentj 0 of the current vector is positive definite only
for s= 1/2, and the energy density−T00 [see (4.27)] is positive definite only
for s= 1. [The cases= 1 in 3+ 1 dimensions has been considered in detail in
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Gel’fand et al. (1963) and Ghose (1996)]. However, for the system as a whole,
the componentj 0 of the current vector is positive definite for any half-integer
spin, and the energy density is positive definite for any integer spin. In the rest
frame, half-integer spin solutions with the opposite sign ofp0 are characterized
by opposite parity.

For the case of infinite-component equations in 2+ 1 dimensions, the energy
is positive definite for any spin, andj 0 is positive or negative definite in accordance
with the sign of the charge.

Consideration of the field on the Poincar´e group also relates to practical com-
putations for multicomponent equations. As noted in Ginzburg (1956), the general
investigation of Gel’fand–Yaglom equations “revealed a number of interesting fea-
tures, but. . . the use of such equations (or more accurately, systems of a large or
infinite number of equations) for any practical computations is not possible.” In
the present approach, due to the use of spin differential operators instead of finite-
or infinite-dimensional matrices, from the technical point of view, there is no es-
sential distinction in the consideration of the equations associated with various
finite-dimensional and infinite-dimensional representations of the Lorentz group.
Therefore, the present approach can work with higher spins and positive-energy
wave equations. For example, the use of spin variablesz has allowed us to obtain
an explicit compact form of general plane wave solutions for any spin (including
fractional spin in 2+ 1 dimensions).

Notice that unlike the equations for particles with unique mass and spin, in the
general case, RWE with mass and spin spectrum can either connect several scalar
functions f (x, z) (e.g., general Gel’fand–Yaglom equations and, in particular,
Bhabha equations) or describe objects with composite spin, which correspond
to the functions f (x, z(1), . . . , z(n)) of one set of space-time coordinatesx and
several sets of spin coordinatesz (e.g., Ivanenko–Landau–K¨ahler or Dirac–Kähler
equation).

7. CONCLUSION

In this paper, we elaborated a general scheme of analysis for fields on the
Poincaré group and applied it in two-, three-, and four-dimensional cases.

Considering the left GRR of the Poincar´e group, we introduced the scalar
field f (x, z) on the group, wherex are coordinates in Minkowski space andz
are coordinates on the Lorentz group. The connection between the left GRR and
the scalar field allows us to use the powerful mathematical method of harmonic
analysis on a group, at the same time supporting physical considerations.

Consideration of the functionsf (x, z) guarantees the possibility to describe
arbitrary spin particles because any irrep of a group is equivalent to some subrep-
resentation of GRR. Thus, we deal with unique field containing all masses and
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spins. As a consequence, we have the following points:

1. The explicit form of spin projection operators does not depend on the spin
value. These operators are differential operators with respect toz.

2. For this scalar field and thus for arbitrary spin, discrete transformations
C, P, T are defined as the automorphisms of the Poincar´e group.

3. RWE arise under the classification of the functions on the Poincar´e group
by eigenvalues of invariant operators and have the same form for arbitrary
spin.

The switch to the usual multicomponent description by functionsψn(x) cor-
responds to a separation of the space-time and spin variables,f (x, z) =∑φn(z)
ψn(x), whereφn(z) andψn(x) transform under contragradient representations of
the Lorentz group. The use of the transformation rules ofx, zunder automorphisms
enables us to deduce the transformation rules ofψn(x) underC, P, T without any
consideration of the specific form of equations of motion.

We showed that in even dimensions, the consistent consideration of RWE
invariant with respect to space reflection requires the use of generators of the group
SO(D, 2), which is an extension of the corresponding Lorentz groupSO(D, 1).

We gave the interpretation of the right generators belonging to the complete
set of commuting operators on the Poincar´e group. This interpretation is similar to
the Wigner and Casimir interpretation of right generators of the rotation group in
the nonrelativistic theory (Biedenharm and Louck, 1981; Wigner, 1959). As in the
nonrelativistic case, right generators define quantum numbers that do not depend
on the choice of the laboratory frame. In particular, in the (3+ 1)-dimensional case,
three right generators of the Poincar´e group define Lorentz characteristicsj1, j2,
and chirality, and the fourth right generator distinguishes particles and antiparticles.

Using complete sets of the commuting operators on the group, we classified
scalar functionsf (x, z). As one of the results of this classification, we repro-
duced essentially all known finite-component RWE. Moreover, such an approach
allowed us to consider alternative possibilities that had not been formulated be-
fore. In particular, in the (3+ 1)-dimensional case we wrote general subsidiary
conditions (5.43) corresponding tos 6= j1+ j2. On the other hand, instead of sub-
sidiary conditions, one can consider functions of momentump and spin variables
z with invariant constraints (5.39). We showed that the set of operators related to
higher spin equations in 3+ 1 dimensions obeys commutation relations ofso(3, 3)
algebra, which coincide with the algebra ofγ -matrices for spin 1/2. But unlike the
latter case, the set of operators for higher spin equations is not closed with respect
to anticommutation.

In the framework of the classification of scalar functions, we also get pos-
itive energy wave equations allowing a probability amplitude interpretation and
associated with infinite-dimensional unitary representations of the Lorentz group.
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Along with the alternative description of integer- or half-integer-spin fields, just
these equations ensure description of fractional spin fields in 1+ 1 and 2+ 1
dimensions.

The consideration of the scalar field on the Poincar´e group allowed us both
to obtain new results and to reproduce the main results of RWE theory, which
earlier were obtained by means of different approaches. Thus, a general approach
to the construction of different types of RWE is established. One also can consider
this as an alternative method to construct a detailed theory of the Poincar´e group
representations.

The approach under consideration can be directly applied to higher dimen-
sional cases and possibly be generalized to other space-time symmetry groups,
such as de Sitter and conformal groups.

APPENDIX A: BASES OF 2 + 1 LORENTZ GROUP
REPRESENTATIONS AND Sµ MATRICES

Spin projection operatorŝS
µ

acting in the space of the functionsf (x, z) of x =
(xµ) and two complex variablesz1 = z2, z2 = −z1, |z1|2− |z2|2 = |z2| − |z1| = 1
have the form

Ŝ
µ = 1

2
(zγ µ∂z− ∗z∗γ µ ∂∗z), z= (z1 z2), ∂z = (∂/∂z1 ∂/∂z2)T , (A1)

where γ µ = (σ3, iσ2,−iσ1). For z= (z1 z2), the relationŜ
µ = − 1

2(z
∗
γ µ∂z− ∗z

γ µ∂∗
z
) is valid.
The polynomials of the power 2Sin z, which correspond to finite-dimensional

irrepsT0
S of the 2+ 1 Lorentz group, can be written in the form

T0
S : fS(x, z) =

2S∑
n=0

φn(z)ψn(x),

φn(z) = (Cn
2S

)1/2
(z1)2S−n(z2)n, s0 = S− n, (A2)

wheres0 is an eigenvalue of̂S
0
, andCn

2S are binomial coefficients. The quasipoly-
nomials of the power 2S≤ −1, which correspond to infinite-dimensional unitary
irrepsT±S of the 2+ 1 Lorentz group, can be written in the form

T+S : fS(x, z) =
∞∑

n=0

φn(z)ψn(x),

φn(z) = (Cn
2S

)1/2
(z2)2S−n(z1)n, s0 = −S+ n,

T−S : fS(x,
∗
z) =

∞∑
n=0

φn(z)ψn(x), (A3)
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φn(z) = (Cn
2S

)1/2
(
∗
z2̇)2S−n(

∗
z1̇)n, s0 = S− n,

Cn
2S =

(
(−1)n0(n− 2S)

n! 0(−2S)

)1/2

.

There is a correspondence between the action of differential operatorsŜ
µ

on
the functionsf (x, z) = φ(z)ψ(x) and the multiplication of matriceŝS

µ
by columns

ψ(x) composed ofψn(x), Ŝ
µ

f (x, z) = φ(z)Sµψ(x). For the finite-dimensional
representationsT0

S , we have (S0)† = S0, (Sk)† = −Sk,

(S(0))n′
n = δnn′ (S− n), n = 0, 1, . . . ,2S,

(S1)n′
n = −

i

2

(
δn,n′+1

√
(2S− n+ 1)n+ δn+1,n′

√
(2S− n)(n+ 1)

)
,

(S2)n′
n = −

1

2

(
δn,n′+1

√
(2S− n+ 1)n− δn+1,n′

√
(2S− n)(n+ 1)

)
. (A4)

The matricesSµ satisfy the condition (Sµ)† = 0Sµ0, where0 is a diagonal matrix,

(0)n′
n = (−1)nδnn′ . The substitutionz→∗z in (A2) changes only signs ofS0 and

S2. For representationsT+S of discrete positive series, we have (Sµ)† = Sµ,

(S(0))n′
n = δnn′ (−S+ n), n = 0, 1, 2, . . . ,

(S1)n′
n = −

1

2

(
δn,n′+1

√
(n− 1− 2S)n+ δn+1,n′

√
(n− 2S)(n+ 1)

)
,

(S2)n′
n =

i

2

(
δn,n′+1

√
(n− 1− 2S)n− δn+1,n′

√
(n− 2S)(n+ 1)

)
. (A5)

For T−S matrices,S1 has the same form, whereasS0, S2 change only their signs.
The case of representations of principal series which are not bounded by the

highest (lowest) weight, was considered in Gitman and Shelepin (1997).
For representations, which correspond to finite-dimensional irrepsT0

S , the de-
composition (A2) can be written in terms of symmetric spin-tensorsψα1···α2S(x) =
ψα(1···α2S) (x),

fS(x, z) = ψα1···α2S(x)zα1 · · · zα2S. (A6)

Comparing the decompositions (A2) and (A6), we obtain the relation

(
Cn

2S

)1/2
ψn(x) = ψ1 · · ·1︸ ︷︷ ︸

2S−n

2 · · ·2︸ ︷︷ ︸
n

(x). (A7)
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APPENDIX B: BASES OF 3 + 2 DE SITTER AND 3 + 1 LORENTZ
GROUP REPRESENTATIONS AND Γµ MATRICES

Consider polynomials of elements of the Diracz-spinorZD = (zα,
∗
zα̇). Any

polynomial of power 2S can be decomposed in the basis of (2S+ 3)!/[6(2S)!]
monomials

(z1)a(z2)b ∗zc
1̇
∗
zd

2̇, a+ b+ c+ d = 2S.

We can write 16 operators, which conserve the power of the polynomial:

Ŝ
µν = 1

2

(
(σµν)βαzα∂β + (σ̄ µν)α̇

β̇

∗
zα̇ ∂

β̇
)− c.c., (B1)

0̂µ = V̂µ

12+ V̂µ

21− c.c.= 1

2

(
σ̄ µα̇α

∗
zα̇ ∂α + σµαα̇zα∂α̇

)− c.c., (B2)

0̂
µ = i

(
V̂µ

12− V̂µ

21

)+ c.c.= i

2

(
σ̄ µα̇α

∗
zα̇ ∂α − σµαα̇zα∂α̇

)+ c.c., (B3)

0̂5 = 1

2
(zα∂α − ∗zα̇ ∂ α̇)+ c.c., (B4)

T̂ = −Ŝ
R
3 =

1

2
(zα∂α + ∗

zα̇ ∂
α̇)− c.c., (B5)

where∂α = ∂/∂zα, ∂α̇ = ∂/∂ ∗zα̇,

(σµν)βα = −
i

4
(σµσ̄ ν − σ̄ ν σ̄ µ)βα, (σ̄ µν)α̇

β̇
= − i

4
(σ̄ µσ ν − σ̄ νσµ)α̇

β̇
, (B6)

and c.c. is the complex conjugate term corresponding to the action in the space of
polynomials of the elements ofZD = (zα,

∗
zα̇). The operator̂T commutes with the

other 15 operators and defines the (±) power of the polynomials for functions of
ZD andZD, respectively. Operators (B1)–(B4) obey the commutation relations of
so(3, 3)∼ sl(4, R) algebra,

[0̂5, Ŝ
µν

] = 0, [0̂5, 0̂µ] = i 0̂
µ
, [0̂5, 0̂

µ
] = −i 0̂µ,

[0̂
µ
, 0̂

ν
] = −i Ŝ

µν
, [ Ŝ

λµ
, 0̂

ν
] = i (ηµν0̂

λ − ηλν0̂µ),

[0̂µ, 0̂
ν
] = −iηµν0̂5, (B7)

[see also (5.58), (5.59)]. Using the notationsŜ
4µ = 0̂µ, Ŝ

5µ = 0̂µ, Ŝ
54 = 0̂5, we

can rewrite the commutation relations in the form (5.62), whereη55 = η44 = η00 =
1, η11 = η22 = η33 = −1. However, for unitary representations of the Poincar´e
group, all the generators and, in particular,B̂

R
3 = ∓i 0̂5 (for functions of ZD

and ZD, respectively), are Hermitian. Thus, settingŜ
5µ = i 0̂

µ
, Ŝ

54 = i 0̂5, for
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these representations, it is natural to consider an algebraso(4, 2)∼ su(2, 2) of
Hermititan operators.

Supplementing the generatorsŜ
µν

of the Lorentz group by four operators0̂µ

(or 0̂µ), we obtain the algebra of the 3+ 2 de Sitter groupSO(3, 2). Generators in
finite-dimensional representations ofSO(3, 2) obey the relationŝ00† = 0̂0, 0̂k† =
−0̂k.

The linear functions ofz, f (x, z) = ZD9D(x), correspond to the four-dimen-
sional bispinor representation. In the space of columns9D(x), the operators act as
matrices

Ŝ
µν → σµν/2, 0̂µ→ γ µ/2, 0̂5→ γ 5/2, 0̂

µ→ i γ µγ 5/2, T̂ → 1/2.
(B8)

In accordance with the general theory, Dirac matrices and spin-1 Duffin–Kemmer
matrices obey commutation relations ofso(3, 3) algebra (Hepner, 1962; Petr´aš,
1995).

Using (2.61)–(2.63), we get the following for the action of the discrete trans-
formations on the operators (B1)–(B5):

Ŝ
µν

0̂µ 0̂
µ

0̂5 T̂
C −1 −1 1 1 −1

P, T ′ (−1)δ0µ+δ0ν −(−1)δ0µ (−1)δ0µ −1 1
TSch −(−1)δ0µ+δ0ν (−1)δ0µ (−1)δ0µ −1 −1

(B9)

It is possible to construct two equations linear inp̂µ for the scalar functions
f (x, z) which are invariant under the proper Poincar´e group

( p̂µ0̂
µ − κ) f (x, z) = 0, ( p̂µ0̂

µ − κ) f (x, z) = 0, (B10)

but in accordance with (B9), only the operatorp̂µ0̂
µ is invariant under space

reflection; the operator̂pµ0̂
µ

changes the sign. Thus, only the first equation is
invariant under space reflection.

Operatorŝ05 and p̂µ0̂
µ commute with all the left generators of the Poincar´e

group, but do not commute with each other, [0̂5, p̂µ0̂
µ] = i p̂µ0̂

µ
. Therefore, the

chirality of a massive particle described by the equation (p̂µ0̂
µ −ms) f (x, z) = 0

is uncertain. The operator̂T commutes both with all left generators of the Poincar´e
group and with operatorŝ0µ; therefore, one may relate to this operator a conserved
quantum number changing sign under charge conjugation.

On the polynomials of four complex variableszα,
∗
zα̇ one can realize symmet-

ric irrepsT[2S0 0] of SL(4, R) ∼ SO(3, 3). These irreps are a symmetric part of 2S-
times the direct product of fundamental four-dimensional irrepsT[100] and remain
irreducible after the reduction on the subgroupSO(3, 2), T[2S0 0]→ T[2S0]. Here
we use notation different from Bhabha (1945): [2S j] corresponds to (j + S S) in
the notation of Bhabha (1945).
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We will consider two bases of the finite-dimensional irrepT[2s0] of SO(3, 2),
namely, bases consisting of eigenfunctions of the operator0̂5 or 0̂0. The first basis
corresponds to the chiral representation,

ϕ
m1m2
j1 j2

(z,
∗
z) = N1/2(z1) j1+m1(z2) j1−m1

∗
z

j2+m2

1̇
∗
z

j2+m2

2̇ , (B11)

wheres= j1+ j2, λ = j1− j2,m1 andm2 are eigenvalues of the operatorsM̂3

and N̂3, which are linear combinations of̂S3 and B̂3 [see (5.13)],N = (2s)!/
[( j1+m1)!( j1−m1)!( j2+m2)!( j2−m2)!]. Consisting of eigenfunctions of the
0̂0 basis,

φ
n1n2
k1k2

(z,
∗
z) = (N ′)1/2(z1+ ∗z1̇)k1+n1(z2+ ∗z2̇)k1−n1(z1− ∗z1̇)k2+n2(z2− ∗z2̇)k2−n2,

(B12)
where s= k1+ k2 and N ′ = (2s)!/[(k1+ n1)!(k1− n1)!(k2+ n2)!(k2− n2)!],
corresponds fors= 1/2 to the Dirac representation. The functions (B12) are eigen-
functions of the operatorŝ00, 0̂

3
, Ŝ3 with eigenvaluesk1− k2, i (n1− n2)/2, (n1+

n2)/2, respectively. For fixeds, we have

fs(x, z,
∗
z) =

∑
j1+ j2=s

∑
m1,m2

ψ
m1 m2
j1 j2

(x)ϕm1 m2
j1 j2

(z,
∗
z)

=
∑

k1+k2=s

∑
n1,n2

ψ
n1 n2
k1k2

(x)φn1 n2
k1 k2

(z,
∗
z). (B13)

Below, we will use the basis (B12). According to (5.74), in the rest frame for
a particle described by the system (5.71)–(5.73), we have

f (x, z,
∗
z) = ψ+(x)φ+s,s3(z,

∗
z)+ ψ−(x)φ−s,s3(z,

∗
z)

= C1eimx0
φ+s,s3(z,

∗
z)+ C2e−imx0

φ−s,s3(z,
∗
z),

(B14)
φ+s,s3(z,

∗
z) = (z1+ ∗z1̇

)s+s3(
z2+ ∗z2̇

)s−s3

,

φ−s,s3(z,
∗
z) = (z1− ∗z1̇

)s+s3(
z2− ∗z2̇

)s−s3

.

The equation (̂pµ0̂
µ − sm) f (x, z,

∗
z) = 0 has the matrix form

( p̂µ0
µ − sm)ψ(x) = 0, (B15)

whereψ(x) is a column. It is convenient to enumerate the basis elements (B12)
[and the elements of the columnψ(x)] in order of decrease ofk1− k2 = s, s−
1, . . . ,−s. Matrices0µ obey the relations00† = 00, 0k† = −0k. Matrix 00 is
diagonal and has the elementsk1− k2. Matrices01 and03 are skew-symmetric
real, and02 is symmetric imaginary. According to (B2), the matrices0k have
nonzero elements only in blocks corresponding to the transitions (k1, k2)→ (k1±
1/2, k2∓ 1/2). Using this property, it is easy to see that the diagonal matrix0 with
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the elements (−1)2k2 commutes with00 and anticommutes with0k, 0µ† = 00µ0.
This allows one to rewrite the Hermitian-conjugate equationψ†(

←
p̂µ 0

µ† + sm) =
0 in the form

ψ̄(x)(
←
p̂µ 0

µ + sm) = 0, ψ̄ = ψ†0, (B16)

and to define the invariant scalar product in the space of columns as
∫
ψ̄(x)ψ(x)

d3x. As a consequence of (B15) and (B16), the continuity equation holds,

∂µ j µ = 0, j µ = ψ̄0µψ.
Now the question concerning the positive definiteness of the current vector

componentj 0 and the energy density may be consider similarly to the (2+ 1)-
dimensional case (see Section 3). For half-integer-spin particles described by the
system (5.71)–(5.73), the charge densityj 0 is positive definite, since in the rest
frame [see (B14)],j 0 = ψ̄000ψ = s(|ψ+(x)| + |ψ−(x)|) > 0. The energy den-
sity [defined in terms of the energy-momentum tensor (4.27)] and the scalar prod-
uct ψ̄ψ are indefinite since in the rest frame, they are proportional to|ψ+(x)| −
|ψ−(x)|. For integer-spin particles, the energy density is positive definite, and the
scalar product andj 0 are indefinite.

Consider discrete transformations in terms of the columnsψ(x). According
to (5.8), under space reflection,φn1 n2

k1 k2
(z,
∗
z)→ (−1)2k1φ

n1 n2
k1 k2

(z,
∗
z). Whence, taking

into accountf (x, z,
∗
z)→ f (x′, z′) = φ(z,

∗
z)ψ ′(x′), we get

ψ(x)
P→ (−1)2s0ψ(x̄), wherex̄ = (x0,−xk). (B17)

According to (2.63), under charge conjugation,φ
n1 n2
k1 k2

(z,
∗
z)→ φ

n1 n2
k1 k2

(
∗
z, z). Taking

into account thatφn1 n2
k1 k2

(
∗
z, z) and (−1)s+n1−n2φ

n2 n1
k2 k1

(z,
∗
z) have the same transfor-

mation rule, we get

ψ
n1 n2
k1 k2

(x)
C→ (−1)s+n1−n2

∗
ψ

n2 n1

k2 k1
(x). (B18)

In particular, fors= 1/2, using the relationf (x, z,
∗
z) = ZD9(x), we get9(x)

P→
γ 09(x̄), 9(x)

C→ 9c(x) = Cψ̄T (x), whereC is the matrix with elements−iσ2

on secondary diagonal,C = i γ 2γ 0. The transformation properties of the bilinear
ψ̄0µψ, ψ̄05ψ, ψ̄0µψ underC, P, T coincide with those of the corresponding
operators [see (B9)].
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